Skip to main content

2019 | OriginalPaper | Buchkapitel

21. Structural Multifunctional Nanofibers and Their Emerging Applications

verfasst von : Dalapathi Gugulothu, Ahmed Barhoum, Syed Muzammil Afzal, Banoth Venkateshwarlu, Hassan Uludag

Erschienen in: Handbook of Nanofibers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofibers are an exciting new class of nanomaterials (NMs) produced by using innovative manufacturing process technologies. Nanofibers are developed from a wide variety of materials of diverse architecture and nature. Nanofibers are divided into the following classes: (1) based on the raw material, nanofibers are classified into organic, inorganic, and carbon and composite fibers, and (2) based on the structure, nanofibers are divided into nonporous, mesoporous, hollow, and core-shell fibers. The geometrical shape (structure) of the fiber materials can be tuned from the non-woven web, yarn, to bulk structures using nanofiber fabrication techniques. Nanofibers have been widely used in a range of applications, such as energy generation, production, and storage, environmental protection and improvement, tissue engineering, pharmaceutical, and biomedical applications. This chapter discusses the nanofibers’ types, structures, fabrication techniques, inherent properties, and how these properties affect their potential usage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zheng MH, Zhang Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRef Zheng MH, Zhang Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRef
2.
Zurück zum Zitat Rathinamoorthy R (2012) Nanofiber for drug delivery system: principle and application. Pak Text J 61:45–48 Rathinamoorthy R (2012) Nanofiber for drug delivery system: principle and application. Pak Text J 61:45–48
3.
Zurück zum Zitat Frenot A, Ioannis SC (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75CrossRef Frenot A, Ioannis SC (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75CrossRef
4.
Zurück zum Zitat Hyuk SY, Taek GK, Tae GP (2009) Surface-functioned electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61:1033–1042CrossRef Hyuk SY, Taek GK, Tae GP (2009) Surface-functioned electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61:1033–1042CrossRef
5.
Zurück zum Zitat Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27CrossRef Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27CrossRef
6.
Zurück zum Zitat Huang MZ, Zhang YZ, Kotaki S, Ramakrishna M (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253 Huang MZ, Zhang YZ, Kotaki S, Ramakrishna M (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253
7.
Zurück zum Zitat Liu G, Zhengbiao G, Hong Y, Cheng L, Li C (2017) Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications. J Control Release 252(28):95–107CrossRef Liu G, Zhengbiao G, Hong Y, Cheng L, Li C (2017) Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications. J Control Release 252(28):95–107CrossRef
8.
Zurück zum Zitat Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425CrossRef Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425CrossRef
9.
Zurück zum Zitat Xie J, MacEwan MR, Schwartz AG, Xia Y (2010) Electrospun nanofibers for neural tissue engineering. Nanoscale 2:35–44CrossRef Xie J, MacEwan MR, Schwartz AG, Xia Y (2010) Electrospun nanofibers for neural tissue engineering. Nanoscale 2:35–44CrossRef
10.
Zurück zum Zitat Li D, Wang Y, Xia Y (2004) Electrospinning nanofibers as Uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 2004(16):361–366CrossRef Li D, Wang Y, Xia Y (2004) Electrospinning nanofibers as Uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 2004(16):361–366CrossRef
11.
Zurück zum Zitat Rho KS, Jeong L, Lee G, Seo BM et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461CrossRef Rho KS, Jeong L, Lee G, Seo BM et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461CrossRef
12.
Zurück zum Zitat Han I, Shim KJ, Kim JY, Im SU et al (2007) Effect of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing. Artif Organs 31:801–808CrossRef Han I, Shim KJ, Kim JY, Im SU et al (2007) Effect of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing. Artif Organs 31:801–808CrossRef
14.
Zurück zum Zitat Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27:1088–1094CrossRef Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27:1088–1094CrossRef
15.
Zurück zum Zitat Daamen WF, Veerkamp JH, van Hest JCM, Van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398CrossRef Daamen WF, Veerkamp JH, van Hest JCM, Van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398CrossRef
16.
Zurück zum Zitat Geng X, Kwon OH, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRef Geng X, Kwon OH, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRef
17.
Zurück zum Zitat Meng ZX, Zheng W, Li L, Zhenga YF (2011) Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys 125:601–611CrossRef Meng ZX, Zheng W, Li L, Zhenga YF (2011) Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys 125:601–611CrossRef
18.
Zurück zum Zitat Jiang H, Fang D, Hsiao BS, Chu B, Chen W (2004) Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5:326–333CrossRef Jiang H, Fang D, Hsiao BS, Chu B, Chen W (2004) Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5:326–333CrossRef
19.
Zurück zum Zitat Zhang JF, Wang Y, Lam ML, McKinnnie RJ et al (2017) Cross-linked poly (lactic acid)/dextran nanofibrous scaffolds with tunable hydrophilicity promoting differentiation of embryoid bodies. Materialstoday 13:306–317 Zhang JF, Wang Y, Lam ML, McKinnnie RJ et al (2017) Cross-linked poly (lactic acid)/dextran nanofibrous scaffolds with tunable hydrophilicity promoting differentiation of embryoid bodies. Materialstoday 13:306–317
20.
Zurück zum Zitat Thanvel R, Seong SAA (2013) Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 8:3641–3662 Thanvel R, Seong SAA (2013) Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 8:3641–3662
21.
Zurück zum Zitat Garry EW, Marcus EC, David GS, Garry LB (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216CrossRef Garry EW, Marcus EC, David GS, Garry LB (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216CrossRef
22.
Zurück zum Zitat Wnek G, Carr M, Simpson D, Bowlin G (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216CrossRef Wnek G, Carr M, Simpson D, Bowlin G (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216CrossRef
24.
Zurück zum Zitat Junka R, Valmikinathan CM, Kalyon DM, Yu X (2013) Laminin functionalized biomimetic nanofibers for nerve tissue engineering. J Biomater Tissue Eng 3:1–9CrossRef Junka R, Valmikinathan CM, Kalyon DM, Yu X (2013) Laminin functionalized biomimetic nanofibers for nerve tissue engineering. J Biomater Tissue Eng 3:1–9CrossRef
25.
Zurück zum Zitat Neal RA, McClugage SG, Link MC, Sefcik LS et al (2009) Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Eng Part C Methods 15:11–21CrossRef Neal RA, McClugage SG, Link MC, Sefcik LS et al (2009) Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Eng Part C Methods 15:11–21CrossRef
26.
Zurück zum Zitat Kijenska E, Prabhakaran MP, Swieszkowski W et al (2014) Interaction of Schwann cells with laminin encapsulated PLCL core–shell nanofibers for nerve tissue engineering. Eur Polym J 50:30–38CrossRef Kijenska E, Prabhakaran MP, Swieszkowski W et al (2014) Interaction of Schwann cells with laminin encapsulated PLCL core–shell nanofibers for nerve tissue engineering. Eur Polym J 50:30–38CrossRef
27.
Zurück zum Zitat Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27:3782–3792CrossRef Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27:3782–3792CrossRef
28.
Zurück zum Zitat Um IC, Fang D, Hsiao BS et al (2004) Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 5:1428–1436CrossRef Um IC, Fang D, Hsiao BS et al (2004) Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 5:1428–1436CrossRef
29.
Zurück zum Zitat Brenner EK, Schiffman JD, Thompson EA et al (2012) Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohyd Polym 87:926–929CrossRef Brenner EK, Schiffman JD, Thompson EA et al (2012) Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohyd Polym 87:926–929CrossRef
30.
Zurück zum Zitat Ge S, Shi X, Sun K, Li C, Uher C et al (2009) Facile hydrothermal synthesis of Iron oxide nanoparticles with Tunable magnetic properties. J Phys Chem C 113:13593–13599CrossRef Ge S, Shi X, Sun K, Li C, Uher C et al (2009) Facile hydrothermal synthesis of Iron oxide nanoparticles with Tunable magnetic properties. J Phys Chem C 113:13593–13599CrossRef
31.
Zurück zum Zitat Wang HG, Yuan S, Long Ma D et al (2015) Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci 8:1660–1681CrossRef Wang HG, Yuan S, Long Ma D et al (2015) Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci 8:1660–1681CrossRef
32.
Zurück zum Zitat Wang H, Ma D, Huang X, Huang Y, Zhang X (2012) General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci Report 2:701CrossRef Wang H, Ma D, Huang X, Huang Y, Zhang X (2012) General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci Report 2:701CrossRef
34.
Zurück zum Zitat Peng C, Zhang J, Xiong Z, Zhao Z, Liu P (2015) Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Micropo Mesopor Mater 215:133–142CrossRef Peng C, Zhang J, Xiong Z, Zhao Z, Liu P (2015) Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Micropo Mesopor Mater 215:133–142CrossRef
35.
Zurück zum Zitat Yongliang WH, Yanfei Z, Ling Z et al (2010) Preparation of TiO2 hollow nanofibers by electrospinning combined with sol–gel process. Cryst Eng comm 12:2256–2260CrossRef Yongliang WH, Yanfei Z, Ling Z et al (2010) Preparation of TiO2 hollow nanofibers by electrospinning combined with sol–gel process. Cryst Eng comm 12:2256–2260CrossRef
36.
Zurück zum Zitat Lee SS, Bai H, Liu Z, Sun DD (2012) Electrospun TiO2/SnO2 nanofibers with innovative structure and chemical properties for highly efficient photocatalytic H2 generation. Int J Hydro Enegy 37:10575–10584CrossRef Lee SS, Bai H, Liu Z, Sun DD (2012) Electrospun TiO2/SnO2 nanofibers with innovative structure and chemical properties for highly efficient photocatalytic H2 generation. Int J Hydro Enegy 37:10575–10584CrossRef
37.
Zurück zum Zitat Xia X, Dong XJ, Wei QF, Cai YB et al (2012) Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning. Expres Polym Lett 2:169–176CrossRef Xia X, Dong XJ, Wei QF, Cai YB et al (2012) Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning. Expres Polym Lett 2:169–176CrossRef
38.
Zurück zum Zitat Du H, Wang J, Sun Y, Yao P, Li X, Yu N (2015) Investigation of gas sensing properties of SnO2/In2O3 composite hetero-nanofibers treated by oxygen plasma. Sensor Actuator B: Chem 206:753–763CrossRef Du H, Wang J, Sun Y, Yao P, Li X, Yu N (2015) Investigation of gas sensing properties of SnO2/In2O3 composite hetero-nanofibers treated by oxygen plasma. Sensor Actuator B: Chem 206:753–763CrossRef
39.
Zurück zum Zitat Yan X, Tai Z, Chen Z, Xue Q (2011) Fabrication of carbon nanofiber–polyaniline composite flexible paper for super capacitor. Nanoscale 3:212–216CrossRef Yan X, Tai Z, Chen Z, Xue Q (2011) Fabrication of carbon nanofiber–polyaniline composite flexible paper for super capacitor. Nanoscale 3:212–216CrossRef
40.
Zurück zum Zitat Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y (2013) Nano Energy 2:138–145CrossRef Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y (2013) Nano Energy 2:138–145CrossRef
41.
Zurück zum Zitat Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K (2001) Vapor-grown carbon fibers (VGCFs) – basic properties and their battery applications. Carbon 39:1287–1297CrossRef Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K (2001) Vapor-grown carbon fibers (VGCFs) – basic properties and their battery applications. Carbon 39:1287–1297CrossRef
42.
Zurück zum Zitat Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRef Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRef
43.
Zurück zum Zitat Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–319CrossRef Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–319CrossRef
44.
Zurück zum Zitat Chen Q, Wu W, Zhao Y, Xi M et al (2014) Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites. Compos Part B Eng 58:43–53CrossRef Chen Q, Wu W, Zhao Y, Xi M et al (2014) Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites. Compos Part B Eng 58:43–53CrossRef
45.
Zurück zum Zitat Miyagaw H, Misra M, Mohanty AK (2005) Mechanical properties of carbon nanotubes and their polymer nanocomposites. J Nanosci Nanotechnol 5:1593–1615CrossRef Miyagaw H, Misra M, Mohanty AK (2005) Mechanical properties of carbon nanotubes and their polymer nanocomposites. J Nanosci Nanotechnol 5:1593–1615CrossRef
46.
Zurück zum Zitat Mordkovich VZ (2003) Carbon nanofibers: a new ultra high-strength material for chemical technology. Theor Found Chem Eng 37:429–438CrossRef Mordkovich VZ (2003) Carbon nanofibers: a new ultra high-strength material for chemical technology. Theor Found Chem Eng 37:429–438CrossRef
47.
Zurück zum Zitat Kim YA, Hayashi T, Fukai Y, Endo M et al (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355:279–284CrossRef Kim YA, Hayashi T, Fukai Y, Endo M et al (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355:279–284CrossRef
48.
Zurück zum Zitat Endo M, Kim YA, Hayashi T, Fukai Y et al (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267–1279CrossRef Endo M, Kim YA, Hayashi T, Fukai Y et al (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267–1279CrossRef
49.
Zurück zum Zitat Reneker D, Chun I (1996) Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnol 7:216–223CrossRef Reneker D, Chun I (1996) Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnol 7:216–223CrossRef
50.
Zurück zum Zitat Xiangcun L, Vijay TJ, Gaohong H, Jibao H et al (2012) Magnetic TiO2–SiO2 hybrid hollow spheres with TiO2 nanofibers on the surface and their formation mechanism. J Mater Chem 22:17476CrossRef Xiangcun L, Vijay TJ, Gaohong H, Jibao H et al (2012) Magnetic TiO2–SiO2 hybrid hollow spheres with TiO2 nanofibers on the surface and their formation mechanism. J Mater Chem 22:17476CrossRef
51.
Zurück zum Zitat Zhang Z, Lieber CM (1993) Nanotube structure and electronic properties probed by STM. Appl Phys Lett 62:2972–2974 Zhang Z, Lieber CM (1993) Nanotube structure and electronic properties probed by STM. Appl Phys Lett 62:2972–2974
52.
Zurück zum Zitat Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151CrossRef Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151CrossRef
53.
Zurück zum Zitat Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibres by electrospinning. Nano Lett 4:933–938CrossRef Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibres by electrospinning. Nano Lett 4:933–938CrossRef
54.
Zurück zum Zitat Zhao T, Liu Z, Nakata K, Nishimoto S, Murakami T, Zhao Y et al (2010) Multichannel TiO2 hollow fibers with enhanced photocatalytic activity. J Mater Chem 20:5095–5099CrossRef Zhao T, Liu Z, Nakata K, Nishimoto S, Murakami T, Zhao Y et al (2010) Multichannel TiO2 hollow fibers with enhanced photocatalytic activity. J Mater Chem 20:5095–5099CrossRef
55.
Zurück zum Zitat Jiang H, Hu Y, Li Y, Zhao P et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108:237–243CrossRef Jiang H, Hu Y, Li Y, Zhao P et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108:237–243CrossRef
56.
Zurück zum Zitat Lee BS, Park KM, Yu WR, Youk JH (2012) An effective method for manufacturing hollow carbon nanofibers and microstructural analysis. Macromol Res 20:605–613CrossRef Lee BS, Park KM, Yu WR, Youk JH (2012) An effective method for manufacturing hollow carbon nanofibers and microstructural analysis. Macromol Res 20:605–613CrossRef
57.
Zurück zum Zitat Lee GH, Song JC, Yoon KB (2010) Controlled wall thickness and porosity of polymeric hallow nanofibers by coaxial electrospinning. Macromol Res 18:571–576CrossRef Lee GH, Song JC, Yoon KB (2010) Controlled wall thickness and porosity of polymeric hallow nanofibers by coaxial electrospinning. Macromol Res 18:571–576CrossRef
58.
Zurück zum Zitat Ahmed GED, Nasser AMB, Khalil AK, Hak YK (2014) Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J Chem 38:198–205CrossRef Ahmed GED, Nasser AMB, Khalil AK, Hak YK (2014) Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J Chem 38:198–205CrossRef
59.
Zurück zum Zitat Li L, Peng S, Lee JKY, Ji D et al (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139CrossRef Li L, Peng S, Lee JKY, Ji D et al (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139CrossRef
60.
Zurück zum Zitat Baizeng F, Jung HK, Cheolgyu L, Jong-Sung Y (2008) Hollow macroporous Core/mesoporous Shell carbon with a tailored structure as a cathode electro catalyst support for proton exchange membrane fuel cells. J Phys Chem C112:639–645 Baizeng F, Jung HK, Cheolgyu L, Jong-Sung Y (2008) Hollow macroporous Core/mesoporous Shell carbon with a tailored structure as a cathode electro catalyst support for proton exchange membrane fuel cells. J Phys Chem C112:639–645
61.
Zurück zum Zitat Sihui Z, Dairong C, Xiuling J, Caihong T (2006) Long TiO2 hollow Fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties. J Phys Chem B 110:11199–11204CrossRef Sihui Z, Dairong C, Xiuling J, Caihong T (2006) Long TiO2 hollow Fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties. J Phys Chem B 110:11199–11204CrossRef
62.
Zurück zum Zitat Kim CH, Jung YH, Kim HY, Lee DR (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14:59–65CrossRef Kim CH, Jung YH, Kim HY, Lee DR (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14:59–65CrossRef
63.
Zurück zum Zitat Nayani K, Katepalli H, Sharma CS, Sharma A et al (2012) Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow sub micrometer polymer fibers. Ind Eng Chem Res 51:1761–1766CrossRef Nayani K, Katepalli H, Sharma CS, Sharma A et al (2012) Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow sub micrometer polymer fibers. Ind Eng Chem Res 51:1761–1766CrossRef
64.
Zurück zum Zitat Chunrong X, Moon JK, Kenneth JB (2006) TiO2 nanofibers and Core–Shell structures prepared using mesoporous molecular sieves as templates. Small 2:52–55CrossRef Chunrong X, Moon JK, Kenneth JB (2006) TiO2 nanofibers and Core–Shell structures prepared using mesoporous molecular sieves as templates. Small 2:52–55CrossRef
65.
Zurück zum Zitat Liangmiao Z, Wencong L, Rongrong C, Shanshan S (2010) One-pot template-free synthesis of mesoporous boehmite core–shell and hollow spheres by a simple solvo thermal route. Mater Res Bull 45:429–436CrossRef Liangmiao Z, Wencong L, Rongrong C, Shanshan S (2010) One-pot template-free synthesis of mesoporous boehmite core–shell and hollow spheres by a simple solvo thermal route. Mater Res Bull 45:429–436CrossRef
66.
Zurück zum Zitat Li Y, Xu G, Yao Y, Xue L, Yanilmaz M, Lee H, Zhang X (2014) Coaxial electrospun Si/C–C core–shell composite nanofibers as binder-free anodes for lithium-ion batteries. Solid State Ionics 258:67–73CrossRef Li Y, Xu G, Yao Y, Xue L, Yanilmaz M, Lee H, Zhang X (2014) Coaxial electrospun Si/C–C core–shell composite nanofibers as binder-free anodes for lithium-ion batteries. Solid State Ionics 258:67–73CrossRef
67.
Zurück zum Zitat Wei M, Lee J, Kang B, Mead J (2005) Preparation of core-sheath nanofibers from conducting polymer blends. Macromol Rapid Commun 26:1127–1132CrossRef Wei M, Lee J, Kang B, Mead J (2005) Preparation of core-sheath nanofibers from conducting polymer blends. Macromol Rapid Commun 26:1127–1132CrossRef
68.
Zurück zum Zitat Xiong C, Kenneth JB (2005) Fabrication of TiO2 nanofibers from a mesoporous silica film. Chem Mater 17:5136–5140CrossRef Xiong C, Kenneth JB (2005) Fabrication of TiO2 nanofibers from a mesoporous silica film. Chem Mater 17:5136–5140CrossRef
69.
Zurück zum Zitat Zhuo HT, Hu JL, Chen SJ (2011) Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials. Polym Lett 5(2):182–187CrossRef Zhuo HT, Hu JL, Chen SJ (2011) Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials. Polym Lett 5(2):182–187CrossRef
70.
Zurück zum Zitat Zhang YZ, Venugopal J, Huang Z, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6:2583–2589CrossRef Zhang YZ, Venugopal J, Huang Z, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6:2583–2589CrossRef
71.
Zurück zum Zitat Li D, Mccann JT, Xia Y (2005) Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small 1:83–86CrossRef Li D, Mccann JT, Xia Y (2005) Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small 1:83–86CrossRef
72.
Zurück zum Zitat Zhang J, Yang D, Xu F, Zhang Z et al (2009) Electrospun core shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules 42:5278–5284CrossRef Zhang J, Yang D, Xu F, Zhang Z et al (2009) Electrospun core shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules 42:5278–5284CrossRef
73.
Zurück zum Zitat Wenqi L, Shuyi M, Yingfeng L, Guijin Y et al (2015) Enhanced ethanol sensing performance of hollow ZnO–SnO2core–shell nanofibers. Sensor Actuator B Chem 211:392–402CrossRef Wenqi L, Shuyi M, Yingfeng L, Guijin Y et al (2015) Enhanced ethanol sensing performance of hollow ZnO–SnO2core–shell nanofibers. Sensor Actuator B Chem 211:392–402CrossRef
74.
Zurück zum Zitat Nair S, Erik H, Seong HK (2008) Fabrication of electrically-conducting nonwoven porous mats of polystyrene–polypyrrole core–shell nanofibers via electrospinning and vapor phase polymerization. J Mater Chem 18:5155–5161CrossRef Nair S, Erik H, Seong HK (2008) Fabrication of electrically-conducting nonwoven porous mats of polystyrene–polypyrrole core–shell nanofibers via electrospinning and vapor phase polymerization. J Mater Chem 18:5155–5161CrossRef
75.
Zurück zum Zitat Xinhong Z, Chaoqun S, Lin G, Shanmu D, Xiao C et al (2011) Mesoporous coaxial titanium nitride-vanadium nitride Fibers of Core-shell structures for high-performance super capacitors. ACS Appl Mater Interface 3:3058–3063CrossRef Xinhong Z, Chaoqun S, Lin G, Shanmu D, Xiao C et al (2011) Mesoporous coaxial titanium nitride-vanadium nitride Fibers of Core-shell structures for high-performance super capacitors. ACS Appl Mater Interface 3:3058–3063CrossRef
76.
Zurück zum Zitat Li F, Zhao Y, Song Y (2010) Core-chell nanofibers: nano channel and capsule by coaxial electrospinning. Nanotechnology and nanomaterials Nanofibers Ashok Kumar, INTECH, Croatia, isbn: 978-953-7619-86-2 Li F, Zhao Y, Song Y (2010) Core-chell nanofibers: nano channel and capsule by coaxial electrospinning. Nanotechnology and nanomaterials Nanofibers Ashok Kumar, INTECH, Croatia, isbn: 978-953-7619-86-2
78.
Zurück zum Zitat Guiru S, Liqun S, Haiming X, Jia L (2016) Electrospinning of nanofibers for energy applications. Nano 6:129 Guiru S, Liqun S, Haiming X, Jia L (2016) Electrospinning of nanofibers for energy applications. Nano 6:129
79.
Zurück zum Zitat Xu H, Hun X, Sun Y, Luo W, Chen C, Liu Y, Huangn Y (2014) Highly porous Li4Ti5O12/carbon nanofibers for ultrafast electrochemical energy storage. Nano Energy 10:163–171CrossRef Xu H, Hun X, Sun Y, Luo W, Chen C, Liu Y, Huangn Y (2014) Highly porous Li4Ti5O12/carbon nanofibers for ultrafast electrochemical energy storage. Nano Energy 10:163–171CrossRef
80.
Zurück zum Zitat Seeram R, Kazutoshi F, Teo WE, Yong T et al (2006) Electrospun nanofibers solving global issues. Materialtoday 9:40–50 Seeram R, Kazutoshi F, Teo WE, Yong T et al (2006) Electrospun nanofibers solving global issues. Materialtoday 9:40–50
81.
Zurück zum Zitat Mondal K (2017) Recent advances in the synthesis of metal oxide nanofibers and their environmental remediation applications. Inventions 2:1–29CrossRef Mondal K (2017) Recent advances in the synthesis of metal oxide nanofibers and their environmental remediation applications. Inventions 2:1–29CrossRef
82.
Zurück zum Zitat Morie A, Garg T, Ak G, Rath G (2016) Nanofibers as novel drug carrier – an overview. Artif Cells Nanomed Biotechnol 44:135–143CrossRef Morie A, Garg T, Ak G, Rath G (2016) Nanofibers as novel drug carrier – an overview. Artif Cells Nanomed Biotechnol 44:135–143CrossRef
83.
Zurück zum Zitat Martin et al (1989) US Patent 4878908 Martin et al (1989) US Patent 4878908
84.
85.
Zurück zum Zitat Stenoien et al (1999) US Patent 5866217 Stenoien et al (1999) US Patent 5866217
86.
Zurück zum Zitat Scopelianos AG (1996) US Patent 5522879 Scopelianos AG (1996) US Patent 5522879
87.
Zurück zum Zitat Verreck G, Chun I, Rosenblatt J (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, non biodegradable polymer. J Control Release 92:349–360CrossRef Verreck G, Chun I, Rosenblatt J (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, non biodegradable polymer. J Control Release 92:349–360CrossRef
88.
Zurück zum Zitat Rajesh V, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1:15–30CrossRef Rajesh V, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1:15–30CrossRef
89.
Zurück zum Zitat Hoerstrup SP, Vacanti JP (2004) Overview of tissue engineering. In: Ratner BD, Hoffman AS, Schoen FJ (eds) Biomaterial science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, San Diego, pp 712–727 Hoerstrup SP, Vacanti JP (2004) Overview of tissue engineering. In: Ratner BD, Hoffman AS, Schoen FJ (eds) Biomaterial science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, San Diego, pp 712–727
90.
Zurück zum Zitat Li WJ, Laurencin CT, Caterson EJ et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621CrossRef Li WJ, Laurencin CT, Caterson EJ et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621CrossRef
91.
Zurück zum Zitat Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRef Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRef
92.
Zurück zum Zitat Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2007) Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 2:1–15CrossRef Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2007) Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 2:1–15CrossRef
93.
Zurück zum Zitat Nair LS, Bhattacharyya S, Laurencin CT (2004) Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Ther 4:659–668CrossRef Nair LS, Bhattacharyya S, Laurencin CT (2004) Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Ther 4:659–668CrossRef
94.
Zurück zum Zitat Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12:4751–4770CrossRef Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12:4751–4770CrossRef
95.
Zurück zum Zitat Laurencin CT, Ko FK (2004) Hybrid nanofibril matrices for use as tissue engineering devices. US patent 6689166 Laurencin CT, Ko FK (2004) Hybrid nanofibril matrices for use as tissue engineering devices. US patent 6689166
96.
Zurück zum Zitat Laurencin CT, Nair LS, Bhattacharyya S, Allcock HR, et al (2005) Polymeric nanofibers for tissue engineering and drug delivery. US patent 7235295 Laurencin CT, Nair LS, Bhattacharyya S, Allcock HR, et al (2005) Polymeric nanofibers for tissue engineering and drug delivery. US patent 7235295
97.
Zurück zum Zitat Kumbar SG, Nair LS, Bhattacharyya S, Laurencin CT (2006) Polymeric nanofibers as novel carriers for the delivery of therapeutic molecules. J Nanosci Nanotechnol 6:2591–2607CrossRef Kumbar SG, Nair LS, Bhattacharyya S, Laurencin CT (2006) Polymeric nanofibers as novel carriers for the delivery of therapeutic molecules. J Nanosci Nanotechnol 6:2591–2607CrossRef
98.
Zurück zum Zitat Lee S, Jin G, Jang JH (2014) Electrospun nanofibers as versatile interfaces for efficient gene delivery. J Biol Eng 8:30–59CrossRef Lee S, Jin G, Jang JH (2014) Electrospun nanofibers as versatile interfaces for efficient gene delivery. J Biol Eng 8:30–59CrossRef
99.
Zurück zum Zitat Yun ZL, Meng L, Changzhi G et al (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442CrossRef Yun ZL, Meng L, Changzhi G et al (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442CrossRef
100.
Zurück zum Zitat Morie A, Garg T, Ak G, Rath G (2016) Nanofibers as novel drug carrier--an overview. Artif Cells Nanomed Biotechnol 44:135–143CrossRef Morie A, Garg T, Ak G, Rath G (2016) Nanofibers as novel drug carrier--an overview. Artif Cells Nanomed Biotechnol 44:135–143CrossRef
101.
Zurück zum Zitat Matthew DB, Dmitry L (2007) Nanofiber-based drug delivery. In: Thassu D, Michel D, Yashwant P (eds) Nanoparticulate drug delivery systems, vol 166. Informa Healthcare USA, Inc., New York, pp 61–69 Matthew DB, Dmitry L (2007) Nanofiber-based drug delivery. In: Thassu D, Michel D, Yashwant P (eds) Nanoparticulate drug delivery systems, vol 166. Informa Healthcare USA, Inc., New York, pp 61–69
102.
Zurück zum Zitat Gibson P, Schreuder Gibson H, Rivin D (1999) Electrospun fiber mats: transport properties. AICHE J 45:190–195CrossRef Gibson P, Schreuder Gibson H, Rivin D (1999) Electrospun fiber mats: transport properties. AICHE J 45:190–195CrossRef
103.
Zurück zum Zitat Gu L, Zhou D, Cao JC (2016) Piezoelectric active humidity sensors based on lead-free NaNbO3Piezoelectric nanofibers. Sensors 16:833CrossRef Gu L, Zhou D, Cao JC (2016) Piezoelectric active humidity sensors based on lead-free NaNbO3Piezoelectric nanofibers. Sensors 16:833CrossRef
104.
Zurück zum Zitat Huang ZM, Kotaki M, Ramakrishna S (2003) Innovations 3(3):30 Huang ZM, Kotaki M, Ramakrishna S (2003) Innovations 3(3):30
Metadaten
Titel
Structural Multifunctional Nanofibers and Their Emerging Applications
verfasst von
Dalapathi Gugulothu
Ahmed Barhoum
Syed Muzammil Afzal
Banoth Venkateshwarlu
Hassan Uludag
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.