Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2016

01.03.2016 | Original Article

Study of reversible kinetic models for alkali-catalyzed Jatropha curcas transesterification

verfasst von: Pankaj Tiwari, Sanjeev Garg

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biodiesel is a promising alternative to diesel fuel because of its renewable feedstocks and potential environmental benefits. Chemically, biodiesel is monoalkyl esters of long-chain fatty acids, which fall in the carbon range of C12–C22. It has similar properties as mineral diesel. Transesterification process is a chemical transformation of triglycerides to biodiesel. Experimental studies of alkali-catalyzed transesterification of nonedible feedstock, Jatropha curcas, to produce Jatropha methyl esters (biodiesel) in a batch reactor are reported. The effects of operating conditions, temperatures (30–60 °C), and stirring rates (750 and 300 rpm), at constant concentration of catalyst (0.5 % w/w of oil) and constant molar ratio of methanol to oil (6:1), on product yields were investigated. The equilibrium conversions of triglycerides to biodiesel were achieved in approximately 40 min for all the experiments conducted and were observed in the range of 43–80 %. The conversion values were observed to increase with the increase in temperature and stirring rate. The main thrust of the present work was to model the kinetics and to simulate alkali-catalyzed transesterification process. Reversible kinetic models for overall transesterification reaction were applied on experimentally obtained conversion data. The model parameters were optimized. The optimal equilibrium rate constant obtained from systematic approaches was found to increase with the increase in temperature and stirring rate. It was concluded that the overall alkali-catalyzed transesterification reaction of Jatropha curcas is a reversible endothermic reaction. Characterization of feedstock oil and biodiesel produced had revealed significant changes in the physical properties during transesterification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Srivastava A, Prasad R (2004) Triglycerides–based diesel fuels. Renew Sust Energ Rev 4:111–133CrossRef Srivastava A, Prasad R (2004) Triglycerides–based diesel fuels. Renew Sust Energ Rev 4:111–133CrossRef
2.
Zurück zum Zitat Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sust Energ Rev 9:363–378CrossRef Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sust Energ Rev 9:363–378CrossRef
3.
Zurück zum Zitat Meher LC, Sagar DV, Naik SN (2006) Technical aspect of biodiesel production by transesterification- a review. Renew Sust Energ Rev 10:248–268CrossRef Meher LC, Sagar DV, Naik SN (2006) Technical aspect of biodiesel production by transesterification- a review. Renew Sust Energ Rev 10:248–268CrossRef
4.
Zurück zum Zitat Subramanian KA, Singal SK, Saxena M, Singhal S (2005) Utilization of liquid biofuels in automotive diesel engines: an Indian perspective. Biomass Bioenerg 29:65–72CrossRef Subramanian KA, Singal SK, Saxena M, Singhal S (2005) Utilization of liquid biofuels in automotive diesel engines: an Indian perspective. Biomass Bioenerg 29:65–72CrossRef
5.
Zurück zum Zitat Shay EG (1993) Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenerg 4:227–242CrossRef Shay EG (1993) Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenerg 4:227–242CrossRef
6.
Zurück zum Zitat Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technol 80:53–62CrossRef Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technol 80:53–62CrossRef
7.
Zurück zum Zitat Krawczyk T (1996) Biodiesel- alternative fuel makes inroads but hurdles remain. INFORM 7:801–815 Krawczyk T (1996) Biodiesel- alternative fuel makes inroads but hurdles remain. INFORM 7:801–815
8.
Zurück zum Zitat Agarwal D (2005) Emissions and performance of straight vegetable oils (Jatropha and Neem) fuelled direct injection compression ignition engine. Department of civil engineering. Indian Institute of Technology Kanpur, India Agarwal D (2005) Emissions and performance of straight vegetable oils (Jatropha and Neem) fuelled direct injection compression ignition engine. Department of civil engineering. Indian Institute of Technology Kanpur, India
9.
Zurück zum Zitat Ziejewski MZ, Kaufman KR, Pratt GL (1983) Vegetable oil as diesel fuel. USDA Argic Rev 28:106–111 Ziejewski MZ, Kaufman KR, Pratt GL (1983) Vegetable oil as diesel fuel. USDA Argic Rev 28:106–111
10.
Zurück zum Zitat Ziejewski M, Kaufman KR, Schwab AW, Pryde EH (1984) Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion. J Am Oil Chem Soc 61:1620–1626CrossRef Ziejewski M, Kaufman KR, Schwab AW, Pryde EH (1984) Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion. J Am Oil Chem Soc 61:1620–1626CrossRef
11.
Zurück zum Zitat Schwab AW, Dykstra GJ, Selke E, Sorenson SC, Pryde EH (1988) Diesel fuel from thermal decomposition of soybean oil. J Am Oil Chem Soc 65:1781–1786CrossRef Schwab AW, Dykstra GJ, Selke E, Sorenson SC, Pryde EH (1988) Diesel fuel from thermal decomposition of soybean oil. J Am Oil Chem Soc 65:1781–1786CrossRef
12.
Zurück zum Zitat Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresource Technol 70:1–15CrossRef Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresource Technol 70:1–15CrossRef
13.
Zurück zum Zitat Gerpan JV, Clements D, Knothe G (2004) Biodiesel Production Technology. Subcontractor Report, NREL. Gerpan JV, Clements D, Knothe G (2004) Biodiesel Production Technology. Subcontractor Report, NREL.
14.
Zurück zum Zitat Chitra P, Venkatachalam P, Sampathrajan A (2005) Optimisation of experimental conditions for biodiesel production form alkali catalyzed transesterification of Jatropha curcus oil. Energ Sust Dev 9:13–18CrossRef Chitra P, Venkatachalam P, Sampathrajan A (2005) Optimisation of experimental conditions for biodiesel production form alkali catalyzed transesterification of Jatropha curcus oil. Energ Sust Dev 9:13–18CrossRef
15.
Zurück zum Zitat Feuge RO, Grose T (1949) Modification of vegetable oils via alkali catalyzed interesterification of peanut oil with ethanol. J Am Oil Chem Soc 26:97–102CrossRef Feuge RO, Grose T (1949) Modification of vegetable oils via alkali catalyzed interesterification of peanut oil with ethanol. J Am Oil Chem Soc 26:97–102CrossRef
16.
Zurück zum Zitat Freedman B, Butterfield RO, Pryde EH (1986) Transesterification kinetics of soybean oil. J Am Oil Chem Soc 63:1375–1380CrossRef Freedman B, Butterfield RO, Pryde EH (1986) Transesterification kinetics of soybean oil. J Am Oil Chem Soc 63:1375–1380CrossRef
17.
Zurück zum Zitat Meher LC, Vidya SSD, Naik SN (2006) Optimization of alkali catalyzed transesterification of Pongania pinnata for production of biodiesel. Bioresource Technol 97:1392–1297CrossRef Meher LC, Vidya SSD, Naik SN (2006) Optimization of alkali catalyzed transesterification of Pongania pinnata for production of biodiesel. Bioresource Technol 97:1392–1297CrossRef
18.
Zurück zum Zitat Canakei M, Gerpen JV (1999) Biodiesel production via acid catalysis. ASAE 42:1203–1210CrossRef Canakei M, Gerpen JV (1999) Biodiesel production via acid catalysis. ASAE 42:1203–1210CrossRef
19.
Zurück zum Zitat Lotera E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalyst. Ind Eng Chem Res 44:5353–5363CrossRef Lotera E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalyst. Ind Eng Chem Res 44:5353–5363CrossRef
20.
Zurück zum Zitat Zullaikah S, Lai CC, Ramjan S, Ju YHA (2005) Two step acid catalyzed process from rice bran oil. Bioresource Technol 96:1889–1896CrossRef Zullaikah S, Lai CC, Ramjan S, Ju YHA (2005) Two step acid catalyzed process from rice bran oil. Bioresource Technol 96:1889–1896CrossRef
21.
Zurück zum Zitat Galen JS, Mohanprasad A, Eric JD, Pratik JM, Michael JG (2004) Transesterification of soybean oil with zeolite and metal catalysts. Appl Catal A 257:213–223CrossRef Galen JS, Mohanprasad A, Eric JD, Pratik JM, Michael JG (2004) Transesterification of soybean oil with zeolite and metal catalysts. Appl Catal A 257:213–223CrossRef
22.
Zurück zum Zitat Gryglewicz S (1999) Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technol 70:249–253CrossRef Gryglewicz S (1999) Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technol 70:249–253CrossRef
23.
Zurück zum Zitat Kim HK, Kang B, Kim MJ, Park YM, Kim D, Lee J, Lee K (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today 93:315–320CrossRef Kim HK, Kang B, Kim MJ, Park YM, Kim D, Lee J, Lee K (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today 93:315–320CrossRef
24.
Zurück zum Zitat Vyas AP, Subrahmanyam N, Patel PA (2009) Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel 88:625–628CrossRef Vyas AP, Subrahmanyam N, Patel PA (2009) Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel 88:625–628CrossRef
25.
Zurück zum Zitat Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B Enzym 16:53–58CrossRef Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B Enzym 16:53–58CrossRef
26.
Zurück zum Zitat Mohamed MS, Bornscheuer WT (2003) Improvement in lipase catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Tech 33:97–103CrossRef Mohamed MS, Bornscheuer WT (2003) Improvement in lipase catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Tech 33:97–103CrossRef
27.
Zurück zum Zitat Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonuas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technol 96:769–777CrossRef Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonuas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technol 96:769–777CrossRef
28.
Zurück zum Zitat Shweta S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energ Fuels 18:154–159CrossRef Shweta S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energ Fuels 18:154–159CrossRef
29.
Zurück zum Zitat Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized canadia antactica lipase. J Am Oil Chem Soc 77:355–360CrossRef Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized canadia antactica lipase. J Am Oil Chem Soc 77:355–360CrossRef
30.
Zurück zum Zitat Peña R, Romero R, Martínez SL, Ramos MJ, Martínez A, Natividad R (2009) Transesterification of castor oil: effect of catalyst and co-solvent. Ind Eng Chem Res 48:1186–1189CrossRef Peña R, Romero R, Martínez SL, Ramos MJ, Martínez A, Natividad R (2009) Transesterification of castor oil: effect of catalyst and co-solvent. Ind Eng Chem Res 48:1186–1189CrossRef
31.
Zurück zum Zitat Boocock DG, Konar SK, Mao V, Sidi H (1996) Fast one-phase oil-rich processes for the preparation of vegetable oil methyl esters. Biomass Bioenerg 11:43–50CrossRef Boocock DG, Konar SK, Mao V, Sidi H (1996) Fast one-phase oil-rich processes for the preparation of vegetable oil methyl esters. Biomass Bioenerg 11:43–50CrossRef
32.
Zurück zum Zitat Demirbas A (2009) Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions. Biomass Bioenerg 33:113–118CrossRef Demirbas A (2009) Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions. Biomass Bioenerg 33:113–118CrossRef
33.
Zurück zum Zitat Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterification and other methods: a survey. Energ Convers Manage 44:2093–2109CrossRef Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterification and other methods: a survey. Energ Convers Manage 44:2093–2109CrossRef
34.
Zurück zum Zitat Darnoko D, Cheryan M (2000) Kinetics of palm oil transesterification in a batch reactor. J Am Oil Chem Soc 77:1263–1267CrossRef Darnoko D, Cheryan M (2000) Kinetics of palm oil transesterification in a batch reactor. J Am Oil Chem Soc 77:1263–1267CrossRef
35.
Zurück zum Zitat Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yield of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643CrossRef Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yield of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643CrossRef
36.
Zurück zum Zitat Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energ 87:1083–1095CrossRef Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energ 87:1083–1095CrossRef
37.
Zurück zum Zitat Patil PD, Deng S (2009) Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88:1302–1306CrossRef Patil PD, Deng S (2009) Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88:1302–1306CrossRef
38.
Zurück zum Zitat Vicente G, Martinez M, Aracil J, Esteban A (2005) Kinetics of sunflower oil methanolysis. Ind Eng Chem Res 44:5447–5454CrossRef Vicente G, Martinez M, Aracil J, Esteban A (2005) Kinetics of sunflower oil methanolysis. Ind Eng Chem Res 44:5447–5454CrossRef
39.
Zurück zum Zitat Noureddini H, Zhu D (1997) Kinetics of transesterification of soybean oil. J Am Oil Chem Soc 74:1457–1463CrossRef Noureddini H, Zhu D (1997) Kinetics of transesterification of soybean oil. J Am Oil Chem Soc 74:1457–1463CrossRef
40.
Zurück zum Zitat Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S (1996) Jatropha curcas as a source for the production of biofuel in Nicaragua. Bioresource Technol 58:77–82CrossRef Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S (1996) Jatropha curcas as a source for the production of biofuel in Nicaragua. Bioresource Technol 58:77–82CrossRef
41.
Zurück zum Zitat Pramanik K (2004) Properties and use of methyl ester of Jatropha curcas oil in compression ignition engine. World Renewable Energy Congress VIII: Linking the World with Renewable Energy, Denver Pramanik K (2004) Properties and use of methyl ester of Jatropha curcas oil in compression ignition engine. World Renewable Energy Congress VIII: Linking the World with Renewable Energy, Denver
42.
Zurück zum Zitat Hanson NW (1973) Official, standardized and recommended methods of analysis essential oils; second edition. The Society for Analytical Chemistry, London Hanson NW (1973) Official, standardized and recommended methods of analysis essential oils; second edition. The Society for Analytical Chemistry, London
43.
Zurück zum Zitat Kumar R, Tiwari P, Garg S (2013) Alkali transesterification of linseed oil for biodiesel production. Fuel 104:553–560CrossRef Kumar R, Tiwari P, Garg S (2013) Alkali transesterification of linseed oil for biodiesel production. Fuel 104:553–560CrossRef
44.
Zurück zum Zitat AOAC (1984) Official Methods of Analysis. Oils and Fats, pp. 508–509. AOAC (1984) Official Methods of Analysis. Oils and Fats, pp. 508–509.
45.
Zurück zum Zitat Levenspiel O (1962) Chemical reaction engineering. Wiley, New York Levenspiel O (1962) Chemical reaction engineering. Wiley, New York
46.
Zurück zum Zitat Gupta SK (1995) Numerical methods for engineers. Wiley Eastern Limited, New Delhi Gupta SK (1995) Numerical methods for engineers. Wiley Eastern Limited, New Delhi
47.
Zurück zum Zitat Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:181–197CrossRef Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:181–197CrossRef
Metadaten
Titel
Study of reversible kinetic models for alkali-catalyzed Jatropha curcas transesterification
verfasst von
Pankaj Tiwari
Sanjeev Garg
Publikationsdatum
01.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2016
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-015-0184-4

Weitere Artikel der Ausgabe 1/2016

Biomass Conversion and Biorefinery 1/2016 Zur Ausgabe