Skip to main content

01.12.2023 | Original Paper

Study on Rock Type Effect of Fault Sliding Stability

Erschienen in: Rock Mechanics and Rock Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The protolith of the hanging wall and footwall of a fault plays a crucial role in influencing the sliding stability of the fault, and different protoliths have different tendencies toward sliding instability. To investigate the influence of protoliths on fault sliding stability, simulated fault friction sliding tests were conducted on five types of rocks: fine sandstone, limestone, marble, basalt, and granite, under various loading conditions. The test results demonstrate that, under the same loading conditions, basalt and granite exhibit a greater inclination toward unstable sliding during fault simulation, primarily displaying regular stick–slip and regular inclusion chaotic stick–slip behaviors. On the other hand, fine sandstone, limestone, and marble are predominantly characterized by stable sliding behaviors. The order of sensitivity for the influencing factors on sliding mode is the type of protolith, followed by initial normal stress, and then displacement loading rate. Based on the type of protolith and loading conditions (initial normal stress and displacement loading rate), the sliding mode can change during the sliding process of the simulated rock faults, transitioning from stable sliding to chaotic stick–slip, and then to regular stick–slip. Alternatively, the sliding mode can shift from regular inclusion chaotic stick–slip to regular stick–slip, or from regular stick–slip to stable sliding. Finally, the complexity of sliding patterns in different types of protoliths is analyzed from the perspectives of mineral composition and microstructure, elucidating the underlying mechanisms behind three sliding patterns: stable sliding, chaotic stick–slip, and regular stick–slip. Furthermore, the degree to which different types of rocks tend toward stick–slip behavior can be ranked as follows: rock mineral composition, mineral particle size, and structure among rock minerals. These research findings contribute to a deeper understanding of fault sliding behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adushkin VV, Kocharyan GG, Novikov VA (2016) Study of fault slip modes. Izvestiya Phys Solid Earth 52:637–647CrossRef Adushkin VV, Kocharyan GG, Novikov VA (2016) Study of fault slip modes. Izvestiya Phys Solid Earth 52:637–647CrossRef
Zurück zum Zitat Archard JF (1957) Elastic deformation and the laws of friction. Proc R Soc Lond Ser A Math Phys Sci 243(1233):190–205 Archard JF (1957) Elastic deformation and the laws of friction. Proc R Soc Lond Ser A Math Phys Sci 243(1233):190–205
Zurück zum Zitat Blanpied ML, Lockner DA, Byerlee JD (1995) Frictional slip of granite at hydrothermal conditions. J Geophys Res 100(B7):13045–13064CrossRef Blanpied ML, Lockner DA, Byerlee JD (1995) Frictional slip of granite at hydrothermal conditions. J Geophys Res 100(B7):13045–13064CrossRef
Zurück zum Zitat Caniven Y, Morgan JK, Blank DG (2021) The role of along-fault dilatancy in fault slip behavior. J Geophys Res Solid Earth 126(11):e2021JB022310CrossRef Caniven Y, Morgan JK, Blank DG (2021) The role of along-fault dilatancy in fault slip behavior. J Geophys Res Solid Earth 126(11):e2021JB022310CrossRef
Zurück zum Zitat Carpenter BM, Collettini C, Viti C, Cavallo A (2016) The influence of normal stress and sliding velocity on the frictional behaviour of calcite at room temperature: insights from laboratory experiments and microstructural observations. Geophys J Int 205(1):548–561CrossRef Carpenter BM, Collettini C, Viti C, Cavallo A (2016) The influence of normal stress and sliding velocity on the frictional behaviour of calcite at room temperature: insights from laboratory experiments and microstructural observations. Geophys J Int 205(1):548–561CrossRef
Zurück zum Zitat Chen J, Verberne BA, Spiers CJ (2015) Interseismic re-strengthening and stabilization of carbonate faults by “non-Dieterich” healing under hydrothermal conditions. Earth Planet Sci Lett 423:1–12CrossRef Chen J, Verberne BA, Spiers CJ (2015) Interseismic re-strengthening and stabilization of carbonate faults by “non-Dieterich” healing under hydrothermal conditions. Earth Planet Sci Lett 423:1–12CrossRef
Zurück zum Zitat Chen J, Niemeijer AR, Spiers CJ (2017) Microphysically derived expressions for rate-and-state friction parameters, a, b, and Dc. J Geophys Res Solid Earth 122(12):9627–9657CrossRef Chen J, Niemeijer AR, Spiers CJ (2017) Microphysically derived expressions for rate-and-state friction parameters, a, b, and Dc. J Geophys Res Solid Earth 122(12):9627–9657CrossRef
Zurück zum Zitat Collettini C, Niemeijer A, Viti C, Smith SA, Marone C (2011) Fault structure, frictional properties and mixed-mode fault slip behavior. Earth Planet Sci Lett 311(3–4):316–327CrossRef Collettini C, Niemeijer A, Viti C, Smith SA, Marone C (2011) Fault structure, frictional properties and mixed-mode fault slip behavior. Earth Planet Sci Lett 311(3–4):316–327CrossRef
Zurück zum Zitat Dieterich JH (1979) Modeling of rock friction: 1. Experimental results and constitutive equations. J Geophys Res Solid Earth 84(B5):2161–2168CrossRef Dieterich JH (1979) Modeling of rock friction: 1. Experimental results and constitutive equations. J Geophys Res Solid Earth 84(B5):2161–2168CrossRef
Zurück zum Zitat Dieterich JH (1981) Constitutive properties of faults with simulated gouge. Mech Behav Crustal Rocks Handin 24:103–120 Dieterich JH (1981) Constitutive properties of faults with simulated gouge. Mech Behav Crustal Rocks Handin 24:103–120
Zurück zum Zitat Doglioni C (2018) A classification of induced seismicity. Geosci Front 9(6):1903–1909CrossRef Doglioni C (2018) A classification of induced seismicity. Geosci Front 9(6):1903–1909CrossRef
Zurück zum Zitat Dong L, Luo Q (2022) Investigations and new insights on earthquake mechanics from fault slip experiments. Earth Sci Rev 228:104019CrossRef Dong L, Luo Q (2022) Investigations and new insights on earthquake mechanics from fault slip experiments. Earth Sci Rev 228:104019CrossRef
Zurück zum Zitat Dong L, Chen Y, Sun D, Zhang Y (2021) Implications for rock instability precursors and principal stress direction from rock acoustic experiments. Int J Min Sci Technol 31(5):789–798CrossRef Dong L, Chen Y, Sun D, Zhang Y (2021) Implications for rock instability precursors and principal stress direction from rock acoustic experiments. Int J Min Sci Technol 31(5):789–798CrossRef
Zurück zum Zitat Foulger GR, Wilson MP, Gluyas JG, Julian BR, Davies RJ (2018) Global review of human-induced earthquakes. Earth Sci Rev 178:438–514CrossRef Foulger GR, Wilson MP, Gluyas JG, Julian BR, Davies RJ (2018) Global review of human-induced earthquakes. Earth Sci Rev 178:438–514CrossRef
Zurück zum Zitat French ME, Zhu W, Banker J (2016) Fault slip controlled by stress path and fluid pressurization rate. Geophys Res Lett 43(9):4330–4339CrossRef French ME, Zhu W, Banker J (2016) Fault slip controlled by stress path and fluid pressurization rate. Geophys Res Lett 43(9):4330–4339CrossRef
Zurück zum Zitat Guglielmi Y, Cappa F, Avouac JP, Henry P, Elsworth D (2015) Seismicity triggered by fluid injection–induced aseismic slip. Science 348(6240):1224–1226CrossRef Guglielmi Y, Cappa F, Avouac JP, Henry P, Elsworth D (2015) Seismicity triggered by fluid injection–induced aseismic slip. Science 348(6240):1224–1226CrossRef
Zurück zum Zitat Harbord CW, Nielsen SB, De Paola N, Holdsworth RE (2017) Earthquake nucleation on rough faults. Geology 45(10):931–934CrossRef Harbord CW, Nielsen SB, De Paola N, Holdsworth RE (2017) Earthquake nucleation on rough faults. Geology 45(10):931–934CrossRef
Zurück zum Zitat Harris RA (2017) Large earthquakes and creeping faults. Rev Geophys 55(1):169–198CrossRef Harris RA (2017) Large earthquakes and creeping faults. Rev Geophys 55(1):169–198CrossRef
Zurück zum Zitat Ida Y (1972) Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J Geophys Res 77(20):3796–3805CrossRef Ida Y (1972) Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J Geophys Res 77(20):3796–3805CrossRef
Zurück zum Zitat Jolivet R, Frank WB (2020) The transient and intermittent nature of slow slip. AGU Advances 1(1):e2019AV000126CrossRef Jolivet R, Frank WB (2020) The transient and intermittent nature of slow slip. AGU Advances 1(1):e2019AV000126CrossRef
Zurück zum Zitat Karner SL, Marone C (2000) Effects of loading rate and normal stress on stress drop and stick–slip recurrence interval. Geocomplex Phys Earthq 120:187–198CrossRef Karner SL, Marone C (2000) Effects of loading rate and normal stress on stress drop and stick–slip recurrence interval. Geocomplex Phys Earthq 120:187–198CrossRef
Zurück zum Zitat Kirkpatrick JD, Fagereng Å, Shelly DR (2021) Geological constraints on the mechanisms of slow earthquakes. Nat Rev Earth Environ 2(4):285–301CrossRef Kirkpatrick JD, Fagereng Å, Shelly DR (2021) Geological constraints on the mechanisms of slow earthquakes. Nat Rev Earth Environ 2(4):285–301CrossRef
Zurück zum Zitat Kodaira S, Iidaka T, Kato A, Park JO, Iwasaki T, Kaneda Y (2004) High pore fluid pressure may cause silent slip in the Nankai Trough. Science 304(5675):1295–1298CrossRef Kodaira S, Iidaka T, Kato A, Park JO, Iwasaki T, Kaneda Y (2004) High pore fluid pressure may cause silent slip in the Nankai Trough. Science 304(5675):1295–1298CrossRef
Zurück zum Zitat Kostoglodov V, Singh SK, Santiago JA, Franco SI, Larson KM, Lowry AR, Bilham R (2003) A large silent earthquake in the Guerrero seismic gap. Mexico. Geophys Res Lett 30(15):1 Kostoglodov V, Singh SK, Santiago JA, Franco SI, Larson KM, Lowry AR, Bilham R (2003) A large silent earthquake in the Guerrero seismic gap. Mexico. Geophys Res Lett 30(15):1
Zurück zum Zitat Li P, Ren F, Cai M, Guo Q, Miao S (2019) Present-day stress state and fault stability analysis in the capital area of China constrained by in situ stress measurements and focal mechanism solutions. J Asian Earth Sci 185:104007CrossRef Li P, Ren F, Cai M, Guo Q, Miao S (2019) Present-day stress state and fault stability analysis in the capital area of China constrained by in situ stress measurements and focal mechanism solutions. J Asian Earth Sci 185:104007CrossRef
Zurück zum Zitat Ma J, Dong L, Zhao G, Li X (2019) Qualitative method and case study for ground vibration of tunnels induced by fault-slip in underground mine. Rock Mech Rock Eng 52:1887–1901CrossRef Ma J, Dong L, Zhao G, Li X (2019) Qualitative method and case study for ground vibration of tunnels induced by fault-slip in underground mine. Rock Mech Rock Eng 52:1887–1901CrossRef
Zurück zum Zitat Marone C, Richardson E (2010) Learning to read fault-slip behavior from fault-zone structure. Geology 38(8):767–768CrossRef Marone C, Richardson E (2010) Learning to read fault-slip behavior from fault-zone structure. Geology 38(8):767–768CrossRef
Zurück zum Zitat Mclaskey GC, Yamashita F (2017) Slow and fast ruptures on a laboratory fault controlled by loading characteristics. J Geophys Res Solid Earth 122(5):3719–3738CrossRef Mclaskey GC, Yamashita F (2017) Slow and fast ruptures on a laboratory fault controlled by loading characteristics. J Geophys Res Solid Earth 122(5):3719–3738CrossRef
Zurück zum Zitat Michel S, Gualandi A, Avouac JP (2019) Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature 574(7779):522–526CrossRef Michel S, Gualandi A, Avouac JP (2019) Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature 574(7779):522–526CrossRef
Zurück zum Zitat Morgan JK, Boettcher MS (1999) Numerical simulations of granular shear zones using the distinct element method: 1. Shear zone kinematics and the micromechanics of localization. J Geophys Res 104(B2):2703–2719CrossRef Morgan JK, Boettcher MS (1999) Numerical simulations of granular shear zones using the distinct element method: 1. Shear zone kinematics and the micromechanics of localization. J Geophys Res 104(B2):2703–2719CrossRef
Zurück zum Zitat Morrow C, Solum J, Tembe S, Lockner D, Wong TF (2007) Using drill cutting separates to estimate the strength of narrow shear zones at SAFOD. Geophys Res Lett 34(11):1CrossRef Morrow C, Solum J, Tembe S, Lockner D, Wong TF (2007) Using drill cutting separates to estimate the strength of narrow shear zones at SAFOD. Geophys Res Lett 34(11):1CrossRef
Zurück zum Zitat Numelin T, Marone C, Kirby E (2007) Frictional properties of natural fault gouge from a low-angle normal fault, Panamint Valley, California. Tectonics 26(2):1CrossRef Numelin T, Marone C, Kirby E (2007) Frictional properties of natural fault gouge from a low-angle normal fault, Panamint Valley, California. Tectonics 26(2):1CrossRef
Zurück zum Zitat Obara K, Kato A (2016) Connecting slow earthquakes to huge earthquakes. Science 353(6296):253–257CrossRef Obara K, Kato A (2016) Connecting slow earthquakes to huge earthquakes. Science 353(6296):253–257CrossRef
Zurück zum Zitat Ohnaka M, Yamashita T (1989) A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters. J Geophys Res Solid Earth 94(B4):4089–4104CrossRef Ohnaka M, Yamashita T (1989) A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters. J Geophys Res Solid Earth 94(B4):4089–4104CrossRef
Zurück zum Zitat Ostapchuk A, Morozova K, Markov V, Pavlov D, Popov M (2021) Acoustic emission reveals multiple slip modes on a frictional fault. Front Earth Sci 9:657487CrossRef Ostapchuk A, Morozova K, Markov V, Pavlov D, Popov M (2021) Acoustic emission reveals multiple slip modes on a frictional fault. Front Earth Sci 9:657487CrossRef
Zurück zum Zitat Peng Z, Gomberg J (2010) An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat Geosci 3(9):599–607CrossRef Peng Z, Gomberg J (2010) An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat Geosci 3(9):599–607CrossRef
Zurück zum Zitat Reches ZE, Lockner DA (2010) Fault weakening and earthquake instability by powder lubrication. Nature 467(7314):452–455CrossRef Reches ZE, Lockner DA (2010) Fault weakening and earthquake instability by powder lubrication. Nature 467(7314):452–455CrossRef
Zurück zum Zitat Renard F, Candela T (2017) Scaling of fault roughness and implications for earthquake mechanics. Fault Zone Dyn Process Evol Fault Prop during Seismic Rupture 2017:195–215CrossRef Renard F, Candela T (2017) Scaling of fault roughness and implications for earthquake mechanics. Fault Zone Dyn Process Evol Fault Prop during Seismic Rupture 2017:195–215CrossRef
Zurück zum Zitat Samuelson J, Elsworth D, Marone C (2009) Shear-induced dilatancy of fluid-saturated faults: experiment and theory. J Geophys Res Solid Earth 114(B12):1CrossRef Samuelson J, Elsworth D, Marone C (2009) Shear-induced dilatancy of fluid-saturated faults: experiment and theory. J Geophys Res Solid Earth 114(B12):1CrossRef
Zurück zum Zitat Sarout J, Le Gonidec Y, Ougier-Simonin A, Schubnel A, Guéguen Y, Dewhurst DN (2017) Laboratory micro-seismic signature of shear faulting and fault slip in shale. Phys Earth Planet Inter 264:47–62CrossRef Sarout J, Le Gonidec Y, Ougier-Simonin A, Schubnel A, Guéguen Y, Dewhurst DN (2017) Laboratory micro-seismic signature of shear faulting and fault slip in shale. Phys Earth Planet Inter 264:47–62CrossRef
Zurück zum Zitat Scholz CH (1998) Earthquakes and friction laws. Nature 391(6662):37–42CrossRef Scholz CH (1998) Earthquakes and friction laws. Nature 391(6662):37–42CrossRef
Zurück zum Zitat Scuderi MM, Niemeijer AR, Collettini C, Marone C (2013) Frictional properties and slip stability of active faults within carbonate-evaporite sequences: the role of dolomite and anhydrite. Earth Planetary Sci Lett 369–370:220–232CrossRef Scuderi MM, Niemeijer AR, Collettini C, Marone C (2013) Frictional properties and slip stability of active faults within carbonate-evaporite sequences: the role of dolomite and anhydrite. Earth Planetary Sci Lett 369–370:220–232CrossRef
Zurück zum Zitat Scuderi MM, Collettini C, Viti C, Tinti E, Marone C (2017) Evolution of shear fabric in granular fault gouge from stable sliding to stick slip and implications for fault slip mode. Geology 45(8):731–734 Scuderi MM, Collettini C, Viti C, Tinti E, Marone C (2017) Evolution of shear fabric in granular fault gouge from stable sliding to stick slip and implications for fault slip mode. Geology 45(8):731–734
Zurück zum Zitat Sun W, Li Y, Wu X, Tang CA (2022) Roles of normal stress, roughness, and slip displacement in the stability of laboratory fault in a sandstone. Appl Sci 12(22):11434CrossRef Sun W, Li Y, Wu X, Tang CA (2022) Roles of normal stress, roughness, and slip displacement in the stability of laboratory fault in a sandstone. Appl Sci 12(22):11434CrossRef
Zurück zum Zitat Takahashi M, Mizoguchi K, Kitamura K, Masuda K (2007) Effects of clay content on the frictional strength and fluid transport property of faults. J Geophys Res Solid Earth 112(B8):1CrossRef Takahashi M, Mizoguchi K, Kitamura K, Masuda K (2007) Effects of clay content on the frictional strength and fluid transport property of faults. J Geophys Res Solid Earth 112(B8):1CrossRef
Zurück zum Zitat Tal Y, Goebel T, Avouac JP (2020) Experimental and modeling study of the effect of fault roughness on dynamic frictional sliding. Earth Planet Sci Lett 536:116133CrossRef Tal Y, Goebel T, Avouac JP (2020) Experimental and modeling study of the effect of fault roughness on dynamic frictional sliding. Earth Planet Sci Lett 536:116133CrossRef
Zurück zum Zitat Tembe S, Lockner DA, Wong TF (2010) Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: binary and ternary mixtures of quartz, illite, and montmorillonite. J Geophys Res Solid Earth 115(B3):1CrossRef Tembe S, Lockner DA, Wong TF (2010) Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: binary and ternary mixtures of quartz, illite, and montmorillonite. J Geophys Res Solid Earth 115(B3):1CrossRef
Zurück zum Zitat Verberne BA, Spiers CJ, Niemeijer AR, De Bresser JHP, De Winter DAM, Plümper O (2014) Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure Appl Geophys 171:2617–2640CrossRef Verberne BA, Spiers CJ, Niemeijer AR, De Bresser JHP, De Winter DAM, Plümper O (2014) Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure Appl Geophys 171:2617–2640CrossRef
Zurück zum Zitat Verberne BA, Niemeijer AR, De Bresser JH, Spiers CJ (2015) Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20–600 °C: implications for natural faults in limestones. J Geophys Res Solid Earth 120(12):8169–8196CrossRef Verberne BA, Niemeijer AR, De Bresser JH, Spiers CJ (2015) Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20–600 °C: implications for natural faults in limestones. J Geophys Res Solid Earth 120(12):8169–8196CrossRef
Zurück zum Zitat Wang GF, Long JM, Feng X (2015) A self-consistent model for the elastic contact of rough surfaces. Acta Mech 226(2):285–293CrossRef Wang GF, Long JM, Feng X (2015) A self-consistent model for the elastic contact of rough surfaces. Acta Mech 226(2):285–293CrossRef
Zurück zum Zitat Xia K, Rosakis AJ, Kanamori H (2004) Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303(5665):1859–1861CrossRef Xia K, Rosakis AJ, Kanamori H (2004) Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303(5665):1859–1861CrossRef
Zurück zum Zitat Xia K, Rosakis AJ, Kanamori H, Rice JR (2005) Laboratory earthquakes along inhomogeneous faults: directionality and supershear. Science 308(5722):681–684CrossRef Xia K, Rosakis AJ, Kanamori H, Rice JR (2005) Laboratory earthquakes along inhomogeneous faults: directionality and supershear. Science 308(5722):681–684CrossRef
Zurück zum Zitat Xing T, Zhu W, French M, Belzer B (2019) Stabilizing effect of high pore fluid pressure on slip behaviors of gouge-bearing faults. J Geophys Res Solid Earth 124(9):9526–9545CrossRef Xing T, Zhu W, French M, Belzer B (2019) Stabilizing effect of high pore fluid pressure on slip behaviors of gouge-bearing faults. J Geophys Res Solid Earth 124(9):9526–9545CrossRef
Zurück zum Zitat Xin, J., Jiang, Q., Li, S., Chen, P., & Zhao, H. (2023). Fracturing and energy evolution of rock around prefabricated rectangular and circular tunnels under shearing load: A comparative analysis. Rock Mechanics and Rock Engineering, 1-28. Xin, J., Jiang, Q., Li, S., Chen, P., & Zhao, H. (2023). Fracturing and energy evolution of rock around prefabricated rectangular and circular tunnels under shearing load: A comparative analysis. Rock Mechanics and Rock Engineering, 1-28.
Zurück zum Zitat Xu S, Fukuyama E, Yamashita F, Mizoguchi K, Takizawa S, Kawakata H (2018) Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments. Tectonophysics 733:209–231CrossRef Xu S, Fukuyama E, Yamashita F, Mizoguchi K, Takizawa S, Kawakata H (2018) Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments. Tectonophysics 733:209–231CrossRef
Zurück zum Zitat Yoshioka N, Scholz CH (1989) Elastic properties of contacting surfaces under normal and shear loads: 1. Theory. J Geophys Res Solid Earth 94(B12):17681–17690CrossRef Yoshioka N, Scholz CH (1989) Elastic properties of contacting surfaces under normal and shear loads: 1. Theory. J Geophys Res Solid Earth 94(B12):17681–17690CrossRef
Zurück zum Zitat Zhang C, Cui G, Deng L, Zhou H, Lu J, Dai F (2020) Laboratory investigation on shear behaviors of bolt–grout interface subjected to constant normal stiffness. Rock Mech Rock Eng 53:1333–1347CrossRef Zhang C, Cui G, Deng L, Zhou H, Lu J, Dai F (2020) Laboratory investigation on shear behaviors of bolt–grout interface subjected to constant normal stiffness. Rock Mech Rock Eng 53:1333–1347CrossRef
Zurück zum Zitat Zhang C, Xu J, Jin S, Li X, Cui G, Guo Y, Meng F, Zhou H, Yan S (2022) Influence of microroughness on stick–slip characteristics of fault under constant normal stiffness. Rock Mech Rock Eng 55(4):2281–2298CrossRef Zhang C, Xu J, Jin S, Li X, Cui G, Guo Y, Meng F, Zhou H, Yan S (2022) Influence of microroughness on stick–slip characteristics of fault under constant normal stiffness. Rock Mech Rock Eng 55(4):2281–2298CrossRef
Zurück zum Zitat Zhang C, Xu J, Jin S, Cui G, Guo Y, Li L (2023) Sliding modes of fault activation under constant normal stiffness conditions. J Rock Mech Geotech Eng 15(5):1213–1225CrossRef Zhang C, Xu J, Jin S, Cui G, Guo Y, Li L (2023) Sliding modes of fault activation under constant normal stiffness conditions. J Rock Mech Geotech Eng 15(5):1213–1225CrossRef
Zurück zum Zitat Zhou X, Ma W, Yang L, Bi J, Cheng H (2018) Experimental study of stick–slip failure processes and effect of physical properties on stick–slip behavior. J Geophys Res Solid Earth 123(1):653–673CrossRef Zhou X, Ma W, Yang L, Bi J, Cheng H (2018) Experimental study of stick–slip failure processes and effect of physical properties on stick–slip behavior. J Geophys Res Solid Earth 123(1):653–673CrossRef
Zurück zum Zitat Zhou X, He Y, Shou Y (2021) Experimental investigation of the effects of loading rate, contact roughness, and normal stress on the stick–slip behavior of faults. Tectonophysics 816:229027CrossRef Zhou X, He Y, Shou Y (2021) Experimental investigation of the effects of loading rate, contact roughness, and normal stress on the stick–slip behavior of faults. Tectonophysics 816:229027CrossRef
Zurück zum Zitat Zhuo YQ, Guo Y, Chen S, Ji Y (2020) Laboratory study on the effects of fault waviness on granodiorite stick–slip instabilities. Geophys J Int 221(2):1281–1291CrossRef Zhuo YQ, Guo Y, Chen S, Ji Y (2020) Laboratory study on the effects of fault waviness on granodiorite stick–slip instabilities. Geophys J Int 221(2):1281–1291CrossRef
Metadaten
Titel
Study on Rock Type Effect of Fault Sliding Stability
Publikationsdatum
01.12.2023
Erschienen in
Rock Mechanics and Rock Engineering
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-023-03646-z