Skip to main content
Erschienen in: Journal of Computers in Education 1/2014

01.03.2014

Supporting students’ conceptual development of light refraction by simulation-based open inquiry with dual-situated learning model

verfasst von: Niwat Srisawasdi, Siriporn Kroothkeaw

Erschienen in: Journal of Computers in Education | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although light is an everyday phenomenon that we constantly observe, a numerous researches have reported that students often displayed learning difficulties and hold unscientific understanding on physics concepts of light wave. To address the situation, inquiry-based learning process with a support of computer simulation has been proved its benefits on development of student’s conceptual learning in science. This paper presents the effects of simulation-based open inquiry with dual-situated learning model on forty 11th grade students' conceptual understanding of light refraction phenomena and change of their conceptions through mixed research methodology. The concurrent mixed methods strategy of one-group pre-, post-, and retention-quasi-experimental design and phenomenological research design was used in this study. The result showed that the students’ conceptual understanding scores for pre-, post-, and retention tests were significantly different and their understanding could be improved after participating with the learning program, which is consistent with a result regarding the quantity of conceptual change. The evidence also indicated that mechanism of conceptual change induced the students’ progression of scientific conceptual understanding of light refraction. Moreover, the result revealed that the later scientific understanding obtained after the participation was preserved within the students’ cognitive structure of conceptual knowledge. This finding suggests that the learning program of simulation-based open inquiry with dual-situated learning model could be used to support a more meaningful learning in science concepts through the process of conceptual change.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press. American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.
Zurück zum Zitat Atasoy, Ş., & Akdenız, A. R. (2007). Developing and applying a test related to appearing misconceptions about Newtonian laws of motion. Journal of Turkish Science Education, 4(1), 45–50. Atasoy, Ş., & Akdenız, A. R. (2007). Developing and applying a test related to appearing misconceptions about Newtonian laws of motion. Journal of Turkish Science Education, 4(1), 45–50.
Zurück zum Zitat Aydin, S., Keles, U. P., & Hasiloglu, A. M. (2012). Establisment for misconceptions that science teacher candidates have about geometric optics. The online journal of new horizons in education, 2(3), 7–15. Aydin, S., Keles, U. P., & Hasiloglu, A. M. (2012). Establisment for misconceptions that science teacher candidates have about geometric optics. The online journal of new horizons in education, 2(3), 7–15.
Zurück zum Zitat Bell, R. L., & Trundle, K. C. (2008). The use of a computer simulation to promote scientific conceptions of moon phases. Journal of Research in Science Teaching, 45(3), 346–372.CrossRef Bell, R. L., & Trundle, K. C. (2008). The use of a computer simulation to promote scientific conceptions of moon phases. Journal of Research in Science Teaching, 45(3), 346–372.CrossRef
Zurück zum Zitat Berelson, B. (1952). Content analysis in communication research. New York: The Free Press. Berelson, B. (1952). Content analysis in communication research. New York: The Free Press.
Zurück zum Zitat Blake, C., & Scanlon, E. (2007). Reconsidering simulations in science education at a distance: Features of effective use. Journal of Computer Assisted learning, 23(6), 491–502.CrossRef Blake, C., & Scanlon, E. (2007). Reconsidering simulations in science education at a distance: Features of effective use. Journal of Computer Assisted learning, 23(6), 491–502.CrossRef
Zurück zum Zitat Buck, L. B., Bretz, S. L., & Towns, M. H. (2008). Characterizing the level of inquiry in the undergraduate laboratory. Journal of College Science Teaching, 38(1), 52–58. Buck, L. B., Bretz, S. L., & Towns, M. H. (2008). Characterizing the level of inquiry in the undergraduate laboratory. Journal of College Science Teaching, 38(1), 52–58.
Zurück zum Zitat Carey, S. (1986). Cognitive science and science education. American Psychologist, 1, 1123–1130.CrossRef Carey, S. (1986). Cognitive science and science education. American Psychologist, 1, 1123–1130.CrossRef
Zurück zum Zitat Chen, Y. L., Hong, Y. R., Sung, Y. T., & Chang, K. E. (2011). Efficacy of simulation-based learning of electronics using visualization and manipulation. Educational Technology & Society, 14(2), 269–277. Chen, Y. L., Hong, Y. R., Sung, Y. T., & Chang, K. E. (2011). Efficacy of simulation-based learning of electronics using visualization and manipulation. Educational Technology & Society, 14(2), 269–277.
Zurück zum Zitat Chen, Y.-L., Pan, P.-R., Sung, Y.-T., & Chang, K.-E. (2013). Correcting misconceptions on electronics: Effects of a simulation-based learning environment backed by a conceptual change model. Educational Technology & Society, 16(2), 212–227. Chen, Y.-L., Pan, P.-R., Sung, Y.-T., & Chang, K.-E. (2013). Correcting misconceptions on electronics: Effects of a simulation-based learning environment backed by a conceptual change model. Educational Technology & Society, 16(2), 212–227.
Zurück zum Zitat Chiu, M. H., & Lin, J. W. (2005). Promoting fourth graders’ conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429–464.CrossRef Chiu, M. H., & Lin, J. W. (2005). Promoting fourth graders’ conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429–464.CrossRef
Zurück zum Zitat Colella, V. (2000). Participatory simulation: Building collaborative understanding through immersive dynamic modeling. Journal of the Learning Sciences, 9(4), 471–500.CrossRef Colella, V. (2000). Participatory simulation: Building collaborative understanding through immersive dynamic modeling. Journal of the Learning Sciences, 9(4), 471–500.CrossRef
Zurück zum Zitat Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091.CrossRef Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091.CrossRef
Zurück zum Zitat Cosgrove, M., & Osborne, R. (1985). A teaching sequence on electric current. In R. Osborne & P. Freyberg (Eds.), Learning in science: The implications of children’s science. Auckland: Heinemann. Cosgrove, M., & Osborne, R. (1985). A teaching sequence on electric current. In R. Osborne & P. Freyberg (Eds.), Learning in science: The implications of children’s science. Auckland: Heinemann.
Zurück zum Zitat Cresswell, J. (2003). Research design: Qualitative, quantitative and mixed methods approaches. London: Sage. Cresswell, J. (2003). Research design: Qualitative, quantitative and mixed methods approaches. London: Sage.
Zurück zum Zitat de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340, 305–308.CrossRef de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340, 305–308.CrossRef
Zurück zum Zitat de Jong, T., Martin, E., Zamarro, J.-M., Esquembre, F., Swaak, J., & van Joolingen, W. R. (1999). The integration of computer simulation and learning support; An example from the physics domain of collisions. Journal of Research in Science Teaching, 36, 597–615.CrossRef de Jong, T., Martin, E., Zamarro, J.-M., Esquembre, F., Swaak, J., & van Joolingen, W. R. (1999). The integration of computer simulation and learning support; An example from the physics domain of collisions. Journal of Research in Science Teaching, 36, 597–615.CrossRef
Zurück zum Zitat de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68, 179–202.CrossRef de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68, 179–202.CrossRef
Zurück zum Zitat Dega, B. G., Kriek, J., & Mogese, T. F. (2013). Students’ conceptual change in electricity and magnetism using simulations: A comparison of cognitive perturbation and cognitive conflict. Journal of Research in Science Teaching, 50(6), 677–698.CrossRef Dega, B. G., Kriek, J., & Mogese, T. F. (2013). Students’ conceptual change in electricity and magnetism using simulations: A comparison of cognitive perturbation and cognitive conflict. Journal of Research in Science Teaching, 50(6), 677–698.CrossRef
Zurück zum Zitat Dias, S. B., & Diniz, J. A. (2014). Towards an enhanced learning management system for blended learning in higher education incorporating distinct learners’ profiles. Educational Technology & Society, 17, 307–319. Dias, S. B., & Diniz, J. A. (2014). Towards an enhanced learning management system for blended learning in higher education incorporating distinct learners’ profiles. Educational Technology & Society, 17, 307–319.
Zurück zum Zitat Djanett, B., Fouad, C., & Djamel, K. (2013). What thinks the university’s students about propagation of light in the vacuum? European Scientific Journal, 9(24), 197–213. Djanett, B., Fouad, C., & Djamel, K. (2013). What thinks the university’s students about propagation of light in the vacuum? European Scientific Journal, 9(24), 197–213.
Zurück zum Zitat Duit, R., & Treagust, D. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671–688.CrossRef Duit, R., & Treagust, D. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671–688.CrossRef
Zurück zum Zitat Dykstra, D. I., Boyle, C. F., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76, 615–652.CrossRef Dykstra, D. I., Boyle, C. F., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76, 615–652.CrossRef
Zurück zum Zitat Fairclough, N. (2001). Critical discourse analysis as a method in social scientific research. In R. Wodak & M. Meyer (Eds.), Methods of critical discourse analysis (pp. 121–138). London: Sage. Fairclough, N. (2001). Critical discourse analysis as a method in social scientific research. In R. Wodak & M. Meyer (Eds.), Methods of critical discourse analysis (pp. 121–138). London: Sage.
Zurück zum Zitat Fairclough, N. (2003). Analysing discourse: Textual analysis for social research. London/New York: Routledge. Fairclough, N. (2003). Analysing discourse: Textual analysis for social research. London/New York: Routledge.
Zurück zum Zitat Galili, I., & Hazan, A. (2000). Learners’ knowledge in optics: Interpretation, structure, and analysis. International Journal in Science Education, 22(1), 57–88.CrossRef Galili, I., & Hazan, A. (2000). Learners’ knowledge in optics: Interpretation, structure, and analysis. International Journal in Science Education, 22(1), 57–88.CrossRef
Zurück zum Zitat Galili, I., & Hazan, A. (2001). The effect of a history-based course in optics on students’ views about science. Science & Education, 10(1–2), 7–32.CrossRef Galili, I., & Hazan, A. (2001). The effect of a history-based course in optics on students’ views about science. Science & Education, 10(1–2), 7–32.CrossRef
Zurück zum Zitat Gerber, M., Grundt, S., & Grote, G. (2008). Distributed collaboration activities in a blended learning scenario and the effects on learning performance. Journal of Computer Assisted learning, 24(3), 232–244.CrossRef Gerber, M., Grundt, S., & Grote, G. (2008). Distributed collaboration activities in a blended learning scenario and the effects on learning performance. Journal of Computer Assisted learning, 24(3), 232–244.CrossRef
Zurück zum Zitat Gunhaart, A., & Srisawasdi, N. (2012). Effect of integrated computer-based laboratory environment on students’ physics conceptual learning of sound wave properties. Procedia - Social and Behavioral Sciences, 46, 5750–5755.CrossRef Gunhaart, A., & Srisawasdi, N. (2012). Effect of integrated computer-based laboratory environment on students’ physics conceptual learning of sound wave properties. Procedia - Social and Behavioral Sciences, 46, 5750–5755.CrossRef
Zurück zum Zitat Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74.CrossRef Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74.CrossRef
Zurück zum Zitat Hannon, J., & Bretag, T. (2010). Negotiating contested discourses of learning technologies in higher education. Educational Technology & Society, 13(1), 106–120. Hannon, J., & Bretag, T. (2010). Negotiating contested discourses of learning technologies in higher education. Educational Technology & Society, 13(1), 106–120.
Zurück zum Zitat Hanrahan, M. U. (2005). Highlighting hybridity: A critical discourse analysis of teacher talk in science classrooms. Science Education, 90(1), 8–43.CrossRef Hanrahan, M. U. (2005). Highlighting hybridity: A critical discourse analysis of teacher talk in science classrooms. Science Education, 90(1), 8–43.CrossRef
Zurück zum Zitat Hardy, C., Harley, B., & Phillips, N. (2004). Discourse analysis and content analysis: Two solitudes? Qualitative Methods, 2, 19–22. Hardy, C., Harley, B., & Phillips, N. (2004). Discourse analysis and content analysis: Two solitudes? Qualitative Methods, 2, 19–22.
Zurück zum Zitat Hennessy, S., Deaney, R., & Ruthven, K. (2006). Situated expertise in integrating use of multimedia simulation into secondary science teaching. International Journal of Science Education, 28(7), 701–732.CrossRef Hennessy, S., Deaney, R., & Ruthven, K. (2006). Situated expertise in integrating use of multimedia simulation into secondary science teaching. International Journal of Science Education, 28(7), 701–732.CrossRef
Zurück zum Zitat Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundation for the 21st century. Science Education, 88, 28–54.CrossRef Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundation for the 21st century. Science Education, 88, 28–54.CrossRef
Zurück zum Zitat Hofstein, A., & Mamlok-Naaman, R. (2007). The laboratory in science education: The state of the art. Chemistry Education: Research and Practice in Europe, 8(2), 105–108. Hofstein, A., & Mamlok-Naaman, R. (2007). The laboratory in science education: The state of the art. Chemistry Education: Research and Practice in Europe, 8(2), 105–108.
Zurück zum Zitat Hsu, Y. (2008). Learning about seasons in a technologically enhanced environment: The impact of teacher-guided and student-centered instructional approaches on the process of students’ conceptual change. Science Education, 92, 320–344.CrossRef Hsu, Y. (2008). Learning about seasons in a technologically enhanced environment: The impact of teacher-guided and student-centered instructional approaches on the process of students’ conceptual change. Science Education, 92, 320–344.CrossRef
Zurück zum Zitat Jaakkola, T., Nurmi, S., & Veermans, K. (2011). A comparison of students’ conceptual understanding of electric circuits in simulation only and simulation-laboratory contexts. Journal of Research in Science Teaching, 48, 71–93.CrossRef Jaakkola, T., Nurmi, S., & Veermans, K. (2011). A comparison of students’ conceptual understanding of electric circuits in simulation only and simulation-laboratory contexts. Journal of Research in Science Teaching, 48, 71–93.CrossRef
Zurück zum Zitat Jaakkolaa, T., & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted learning, 24, 271–283.CrossRef Jaakkolaa, T., & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted learning, 24, 271–283.CrossRef
Zurück zum Zitat Jimoyiannis, A., & Angelaina, S. (2012). Towards an analysis framework for investigating students’ engagement and learning in educational blogs. Journal of Computer Assisted learning, 28, 222–234.CrossRef Jimoyiannis, A., & Angelaina, S. (2012). Towards an analysis framework for investigating students’ engagement and learning in educational blogs. Journal of Computer Assisted learning, 28, 222–234.CrossRef
Zurück zum Zitat Jimoyiannis, A., & Komis, V. (2001). Computer simulations in teaching and learning physics: A case study concerning students’ understanding of trajectory motion. Computers & Education, 36(2), 183–204.CrossRef Jimoyiannis, A., & Komis, V. (2001). Computer simulations in teaching and learning physics: A case study concerning students’ understanding of trajectory motion. Computers & Education, 36(2), 183–204.CrossRef
Zurück zum Zitat Kaewkhong, K., Mazzolini, A., Narumon Emarat, N., & Arayathanitkul, K. (2010). Thai high-school students’ misconceptions about and models of light refraction through a planar surface. Physics Education, 45(1), 91–107.CrossRef Kaewkhong, K., Mazzolini, A., Narumon Emarat, N., & Arayathanitkul, K. (2010). Thai high-school students’ misconceptions about and models of light refraction through a planar surface. Physics Education, 45(1), 91–107.CrossRef
Zurück zum Zitat Kassarjian, H. H. (2001). Content analysis in consumer research. Journal of Consumer Research, 4, 8–18.CrossRef Kassarjian, H. H. (2001). Content analysis in consumer research. Journal of Consumer Research, 4, 8–18.CrossRef
Zurück zum Zitat Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the development of teacher knowledge in a design seminar: Integrating content, pedagogy and technology. Computers & Education, 49(3), 740–762.CrossRef Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the development of teacher knowledge in a design seminar: Integrating content, pedagogy and technology. Computers & Education, 49(3), 740–762.CrossRef
Zurück zum Zitat Krippendorff, K. (1980). Content analysis: An introduction to its methodology. Beverly Hills, CA: Sage. Krippendorff, K. (1980). Content analysis: An introduction to its methodology. Beverly Hills, CA: Sage.
Zurück zum Zitat Kuhn, D., Black, J. B., Kesselman, A., & Kaplan, D. (2000). The development of cognitive skills to support inquiry learning. Cognition and Instruction, 18, 495–523.CrossRef Kuhn, D., Black, J. B., Kesselman, A., & Kaplan, D. (2000). The development of cognitive skills to support inquiry learning. Cognition and Instruction, 18, 495–523.CrossRef
Zurück zum Zitat Lazonder, A. W., & Ehrenhard, S. (2013). Relative effectiveness of physical and virtual manipulatives for conceptual change in science: How falling objects fall. Journal of Computer Assisted learning,. doi:10.1111/jcal.12024. Lazonder, A. W., & Ehrenhard, S. (2013). Relative effectiveness of physical and virtual manipulatives for conceptual change in science: How falling objects fall. Journal of Computer Assisted learning,. doi:10.​1111/​jcal.​12024.
Zurück zum Zitat Lazonder, A. W., Hagemans, M. G., & de Jong, T. (2010). Offering and discovering domain information in simulation-based inquiry learning. Learning and Instruction, 20, 511–520.CrossRef Lazonder, A. W., Hagemans, M. G., & de Jong, T. (2010). Offering and discovering domain information in simulation-based inquiry learning. Learning and Instruction, 20, 511–520.CrossRef
Zurück zum Zitat Lee, C. Q., & She, H. C. (2010). Facilitating students’ conceptual change and scientific reasoning involving the unit of combustion. Research in Science Education, 40(4), 479–504.CrossRef Lee, C. Q., & She, H. C. (2010). Facilitating students’ conceptual change and scientific reasoning involving the unit of combustion. Research in Science Education, 40(4), 479–504.CrossRef
Zurück zum Zitat Liao, Y. W., & She, H. C. (2009). Enhancing eight grade students’ scientific conceptual change and scientific reasoning through a web-based learning program. Educational Technology & Society, 12(4), 228–240. Liao, Y. W., & She, H. C. (2009). Enhancing eight grade students’ scientific conceptual change and scientific reasoning through a web-based learning program. Educational Technology & Society, 12(4), 228–240.
Zurück zum Zitat Lombardi, D., Sinatra, G. M., & Nussbaum, E. M. (2013). Plausibility reappraisals and shifts in middle school students’ climate change conceptions. Learning and Instruction, 27, 50–62.CrossRef Lombardi, D., Sinatra, G. M., & Nussbaum, E. M. (2013). Plausibility reappraisals and shifts in middle school students’ climate change conceptions. Learning and Instruction, 27, 50–62.CrossRef
Zurück zum Zitat Macabebe, E. Q. B., Culaba, I. B., & Maquiling, J. T. (2010). Pre-conceptions of Newton’s laws of motion of students in introductory physics. AIP Conference Proceedings, 1263(1), 106–109.CrossRef Macabebe, E. Q. B., Culaba, I. B., & Maquiling, J. T. (2010). Pre-conceptions of Newton’s laws of motion of students in introductory physics. AIP Conference Proceedings, 1263(1), 106–109.CrossRef
Zurück zum Zitat McElhaney, K. W., & Linn, M. C. (2011). Investigations of a complex, realistic task: Intentional, unsystematic, and exhaustive experimenters. Journal of Research in Science Teaching, 48(7), 745–770.CrossRef McElhaney, K. W., & Linn, M. C. (2011). Investigations of a complex, realistic task: Intentional, unsystematic, and exhaustive experimenters. Journal of Research in Science Teaching, 48(7), 745–770.CrossRef
Zurück zum Zitat Muller, D. A., Sharma, M. D., & Reimann, P. (2008). Raising cognitive load with linear multimedia to promote conceptual change. Science Education, 92(2), 278–296.CrossRef Muller, D. A., Sharma, M. D., & Reimann, P. (2008). Raising cognitive load with linear multimedia to promote conceptual change. Science Education, 92(2), 278–296.CrossRef
Zurück zum Zitat National Research Council. (2000). How people learn: Brain, mind, experience, and school. Washington DC: National Academy Press. National Research Council. (2000). How people learn: Brain, mind, experience, and school. Washington DC: National Academy Press.
Zurück zum Zitat Neuendorf, K. A. (2004). Content analysis—A contrast and complement to discourse analysis. Qualitative Methods, 2(1), 33–35. Neuendorf, K. A. (2004). Content analysis—A contrast and complement to discourse analysis. Qualitative Methods, 2(1), 33–35.
Zurück zum Zitat Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21–47.CrossRef Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21–47.CrossRef
Zurück zum Zitat Olympiou, G., Zacharia, Z. C., & de Jong, T. (2013). Making the invisible visible: Enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41, 575–596.CrossRef Olympiou, G., Zacharia, Z. C., & de Jong, T. (2013). Making the invisible visible: Enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41, 575–596.CrossRef
Zurück zum Zitat Phillips, N., & Hardy, C. (2002). Discourse analysis: Investigating processes of social construction. Thousand Oaks, CA: Sage. Phillips, N., & Hardy, C. (2002). Discourse analysis: Investigating processes of social construction. Thousand Oaks, CA: Sage.
Zurück zum Zitat Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.CrossRef Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.CrossRef
Zurück zum Zitat Potter, J. (2003). Discourse analysis and discursive psychology. In P. M. Camic, J. E., Rhodes, & L. Yardley (Eds.), Qualitative research in psychology: Expanding perspectives in methodology and design (pp. 73–94). Washington: American Psychological Association. Potter, J. (2003). Discourse analysis and discursive psychology. In P. M. Camic, J. E., Rhodes, & L. Yardley (Eds.), Qualitative research in psychology: Expanding perspectives in methodology and design (pp. 73–94). Washington: American Psychological Association.
Zurück zum Zitat Renken, M. D., & Nunez, N. (2013). Computer simulations and clear observations do not guarantee conceptual understanding. Learning and Instruction, 23, 10–23.CrossRef Renken, M. D., & Nunez, N. (2013). Computer simulations and clear observations do not guarantee conceptual understanding. Learning and Instruction, 23, 10–23.CrossRef
Zurück zum Zitat Riffe, D., Lacy, S., & Fico, F. G. (1998). Analyzing media messages: Using quantitative content analysis in research. Mahwah, NJ: Lawrence Erlbaum. Riffe, D., Lacy, S., & Fico, F. G. (1998). Analyzing media messages: Using quantitative content analysis in research. Mahwah, NJ: Lawrence Erlbaum.
Zurück zum Zitat Ronen, M., & Eliahu, M. (2000). Simulation-a bridge between theory and reality: The case of electric circuits. Journal of Computer Assisted learning, 16(1), 14–26.CrossRef Ronen, M., & Eliahu, M. (2000). Simulation-a bridge between theory and reality: The case of electric circuits. Journal of Computer Assisted learning, 16(1), 14–26.CrossRef
Zurück zum Zitat Russ, R. S., Scherr, R. E., Hammer, D., & Mikeksa, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education., 92(3), 499–525.CrossRef Russ, R. S., Scherr, R. E., Hammer, D., & Mikeksa, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education., 92(3), 499–525.CrossRef
Zurück zum Zitat Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136–153.CrossRef Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136–153.CrossRef
Zurück zum Zitat Saglam-Arslan, A., & Devecioglu, Y. (2010). Student teachers’ levels of understanding and model of understanding about Newton’s laws of motion. Asia-Pacific Forum on Science Learning & Teaching, 11(1), 1–20. Saglam-Arslan, A., & Devecioglu, Y. (2010). Student teachers’ levels of understanding and model of understanding about Newton’s laws of motion. Asia-Pacific Forum on Science Learning & Teaching, 11(1), 1–20.
Zurück zum Zitat Savinainen, A., & Scott, P. (2002). Using the Force Concept Inventory to monitor student learning and to plan teaching. Physics Education, 37, 53–58.CrossRef Savinainen, A., & Scott, P. (2002). Using the Force Concept Inventory to monitor student learning and to plan teaching. Physics Education, 37, 53–58.CrossRef
Zurück zum Zitat Schifter, C. C., Ketelhut, D. J., & Nelson, B. C. (2012). Presence and middle school students’ participation in a virtual game environment to assess science inquiry. Educational Technology & Society, 15(1), 53–63. Schifter, C. C., Ketelhut, D. J., & Nelson, B. C. (2012). Presence and middle school students’ participation in a virtual game environment to assess science inquiry. Educational Technology & Society, 15(1), 53–63.
Zurück zum Zitat She, H. C. (2002). Concepts of higher hierarchical level required more dual situational learning events for conceptual change: A study of students’ conceptual changes on air pressure and buoyancy. International Journal of Science Education, 24(9), 981–996.CrossRef She, H. C. (2002). Concepts of higher hierarchical level required more dual situational learning events for conceptual change: A study of students’ conceptual changes on air pressure and buoyancy. International Journal of Science Education, 24(9), 981–996.CrossRef
Zurück zum Zitat She, H. C. (2003). DSLM instructional approach to conceptual change involving thermal expansion. Research in Science and Technological Education, 21(1), 43–54.CrossRef She, H. C. (2003). DSLM instructional approach to conceptual change involving thermal expansion. Research in Science and Technological Education, 21(1), 43–54.CrossRef
Zurück zum Zitat She, H. C. (2004a). Facilitating changes in ninth grade students’ understanding of dissolution and diffusion through DSLM instruction. Research in Science Education, 34(4), 503–525. She, H. C. (2004a). Facilitating changes in ninth grade students’ understanding of dissolution and diffusion through DSLM instruction. Research in Science Education, 34(4), 503–525.
Zurück zum Zitat She, H. C. (2004b). Fostering radical conceptual change through dual-situated learning model. Journal of Research in Science Teaching, 41(2), 142–164.CrossRef She, H. C. (2004b). Fostering radical conceptual change through dual-situated learning model. Journal of Research in Science Teaching, 41(2), 142–164.CrossRef
Zurück zum Zitat She, H. C., & Liao, Y. W. (2010). Bridging scientific reasoning and conceptual change through adaptive web-based learning. Journal of Research in Science Teaching, 47(1), 91–119.CrossRef She, H. C., & Liao, Y. W. (2010). Bridging scientific reasoning and conceptual change through adaptive web-based learning. Journal of Research in Science Teaching, 47(1), 91–119.CrossRef
Zurück zum Zitat Sing, C. C., & Khine, M. S. (2006). An analysis of interaction and participation patterns in online community. Educational Technology & Society, 9(1), 250–261. Sing, C. C., & Khine, M. S. (2006). An analysis of interaction and participation patterns in online community. Educational Technology & Society, 9(1), 250–261.
Zurück zum Zitat Spyrtou, A., Hatzikraniotis, E., & Kariotoglou, P. (2009). Educational software for improving learning aspects of Newton’s Third Law for student teachers. Education and Information Technologies, 14(2), 163–187.CrossRef Spyrtou, A., Hatzikraniotis, E., & Kariotoglou, P. (2009). Educational software for improving learning aspects of Newton’s Third Law for student teachers. Education and Information Technologies, 14(2), 163–187.CrossRef
Zurück zum Zitat Srisawasdi, N. (2012). Introducing students to authentic inquiry investigation by using an artificial olfactory system. In K. C. D. Tan, M. Kim, & S. W. Hwang (Eds.), Issues and challenges in science education research: Moving forward. Dordrecht: Springer. Srisawasdi, N. (2012). Introducing students to authentic inquiry investigation by using an artificial olfactory system. In K. C. D. Tan, M. Kim, & S. W. Hwang (Eds.), Issues and challenges in science education research: Moving forward. Dordrecht: Springer.
Zurück zum Zitat Stewart, J., Cartier, J. L., & Passmore, P. M. (2005). Developing understanding through model-based inquiry. In M. S. Donovan & J. D. Bransford (Eds.), How students learn (pp. 515–565). Washington, DC: National Research Council. Stewart, J., Cartier, J. L., & Passmore, P. M. (2005). Developing understanding through model-based inquiry. In M. S. Donovan & J. D. Bransford (Eds.), How students learn (pp. 515–565). Washington, DC: National Research Council.
Zurück zum Zitat Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In L. West & L. Pines (Eds.), Cognitive structure and conceptual change (pp. 211–231). Orlando. FL.: Academic Press. Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In L. West & L. Pines (Eds.), Cognitive structure and conceptual change (pp. 211–231). Orlando. FL.: Academic Press.
Zurück zum Zitat Suits, J. P., & Srisawasdi, N. (2013). Use of an interactive computer-simulated experiment to enhance students’ mental models of hydrogen bonding phenomena. In J. P. Suits & M. J. Sanger (Eds.), Pedagogic roles of animations and simulations in chemistry courses ACS Symposium Series 1142. Washington, DC: American Chemical Society. Suits, J. P., & Srisawasdi, N. (2013). Use of an interactive computer-simulated experiment to enhance students’ mental models of hydrogen bonding phenomena. In J. P. Suits & M. J. Sanger (Eds.), Pedagogic roles of animations and simulations in chemistry courses ACS Symposium Series 1142. Washington, DC: American Chemical Society.
Zurück zum Zitat Tao, P. K., & Gunstone, R. F. (1999). The process of conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36, 859–882.CrossRef Tao, P. K., & Gunstone, R. F. (1999). The process of conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36, 859–882.CrossRef
Zurück zum Zitat Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
Zurück zum Zitat Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54, 1078–1088.CrossRef Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54, 1078–1088.CrossRef
Zurück zum Zitat Tseng, C. H., Tuan, H. L., & Chin, C. C. (2009). Investigating the influence of motivational factors on conceptual change in a digital learning context using the dual-situated learning model. International Journal of Science Education, 32(14), 1853–1875.CrossRef Tseng, C. H., Tuan, H. L., & Chin, C. C. (2009). Investigating the influence of motivational factors on conceptual change in a digital learning context using the dual-situated learning model. International Journal of Science Education, 32(14), 1853–1875.CrossRef
Zurück zum Zitat Veemans, K., van Joolingen, W., & de Jong, T. (2006). Use of heuristics to facilitate scientific discovery learning in a simulation learning environment in a physics domain. International Journal of Science Education, 28(4), 341–361.CrossRef Veemans, K., van Joolingen, W., & de Jong, T. (2006). Use of heuristics to facilitate scientific discovery learning in a simulation learning environment in a physics domain. International Journal of Science Education, 28(4), 341–361.CrossRef
Zurück zum Zitat Vreman-de Olde, C., de Jong, T., & Gijlers, H. (2013). Learning by designing instruction in the context of simulation-based inquiry learning. Educational Technology & Society, 16(4), 47–58. Vreman-de Olde, C., de Jong, T., & Gijlers, H. (2013). Learning by designing instruction in the context of simulation-based inquiry learning. Educational Technology & Society, 16(4), 47–58.
Zurück zum Zitat Weber, R. P. (1985). Basic content analysis. Beverly Hills, CA: Sage. Weber, R. P. (1985). Basic content analysis. Beverly Hills, CA: Sage.
Zurück zum Zitat Wilson, J. (2003). Political discourse. In D. Schffrin, et al. (Eds.), The handbook of discourse analysis (pp. 398–415). Malden: Blackwell Publishing Company. Wilson, J. (2003). Political discourse. In D. Schffrin, et al. (Eds.), The handbook of discourse analysis (pp. 398–415). Malden: Blackwell Publishing Company.
Zurück zum Zitat Winberg, T. M., & Berg, C. A. R. (2007). Students’ cognitive focus during a chemistry laboratory exercise: Effects of a computer-simulated prelab. Journal of Research in Science Teaching, 44(8), 1108–1133.CrossRef Winberg, T. M., & Berg, C. A. R. (2007). Students’ cognitive focus during a chemistry laboratory exercise: Effects of a computer-simulated prelab. Journal of Research in Science Teaching, 44(8), 1108–1133.CrossRef
Zurück zum Zitat Windschitl, M., & Andre, T. (1998). Using computer simulations to enhance conceptual change: The roles of constructivist instruction and student epistemological beliefs. Journal of Research in Science Teaching, 35(2), 145–160.CrossRef Windschitl, M., & Andre, T. (1998). Using computer simulations to enhance conceptual change: The roles of constructivist instruction and student epistemological beliefs. Journal of Research in Science Teaching, 35(2), 145–160.CrossRef
Zurück zum Zitat Wu, H.-K., & Shah, P. (2004). Thinking with representations: Exploring visuospatial thinking in chemistry. Science Education, 88(3), 465–492.CrossRef Wu, H.-K., & Shah, P. (2004). Thinking with representations: Exploring visuospatial thinking in chemistry. Science Education, 88(3), 465–492.CrossRef
Zurück zum Zitat Yen, H. C., Tuan, H. L., & Liao, C. H. (2011). Investigating the influence of motivation on students’ conceptual learning outcomes in web-based vs. classroom-based science teaching contexts. Research in Science Education, 41, 211–224.CrossRef Yen, H. C., Tuan, H. L., & Liao, C. H. (2011). Investigating the influence of motivation on students’ conceptual learning outcomes in web-based vs. classroom-based science teaching contexts. Research in Science Education, 41, 211–224.CrossRef
Zurück zum Zitat Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: An effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted learning, 23, 120–132.CrossRef Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: An effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted learning, 23, 120–132.CrossRef
Zurück zum Zitat Zacharia, Z., & Anderson, O. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of physics. American Journal of Physics, 71, 618.CrossRef Zacharia, Z., & Anderson, O. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of physics. American Journal of Physics, 71, 618.CrossRef
Zurück zum Zitat Zacharias, G. L., MacMillan, J., & Van Hemel, S. B. (2008). Behavioral modeling and simulation: From individuals to societies. Washington, DC: National Academies Press. Zacharias, G. L., MacMillan, J., & Van Hemel, S. B. (2008). Behavioral modeling and simulation: From individuals to societies. Washington, DC: National Academies Press.
Zurück zum Zitat Zion, M., & Sadeh, I. (2007). Curiosity and open inquiry learning. Journal of Biological Education, 41(4), 162–168.CrossRef Zion, M., & Sadeh, I. (2007). Curiosity and open inquiry learning. Journal of Biological Education, 41(4), 162–168.CrossRef
Metadaten
Titel
Supporting students’ conceptual development of light refraction by simulation-based open inquiry with dual-situated learning model
verfasst von
Niwat Srisawasdi
Siriporn Kroothkeaw
Publikationsdatum
01.03.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Computers in Education / Ausgabe 1/2014
Print ISSN: 2197-9987
Elektronische ISSN: 2197-9995
DOI
https://doi.org/10.1007/s40692-014-0005-y

Weitere Artikel der Ausgabe 1/2014

Journal of Computers in Education 1/2014 Zur Ausgabe

Premium Partner