Skip to main content
Erschienen in: Cellulose 1/2016

22.10.2015 | Original Paper

Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application

verfasst von: Arie Mulyadi, Yulin Deng

Erschienen in: Cellulose | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose nanofibrils (CNFs) have been of great interest as reinforcing fillers because of their low density, high aspect ratio, and excellent mechanical strength properties. The advantages of CNFs, however, are often limited by their self-aggregation tendency and poor interfacial compatibility with hydrophobic polymer matrices. In this study, maleated styrene block copolymers were grafted on the surface of CNFs through esterification. The grafted polymer fraction of 25 wt% by gravimetric measurement was obtained. The evidence of grafting was also supported by changes in chemical functional groups and addition of the polymer thermal degradation step. A contact angle as high as 130° was observed on modified CNF film. The influences of modified CNFs on the surface morphology, thermal stability, and crystallinity were also evaluated and compared with those of neat CNFs. The reinforcing capability of CNFs as reinforcing fillers in the hydrophobic polymer matrix was assessed. The results also highlight the effect of improved compatibility between the surface modified CNF and polystyrene matrix to maintain optimum tensile strength at various filler concentrations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Baeza J, Freer J (2000) Chemical characterization of wood and its components. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry, second edition, revised, and expanded. Dekker, New York, pp 275–384 Baeza J, Freer J (2000) Chemical characterization of wood and its components. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry, second edition, revised, and expanded. Dekker, New York, pp 275–384
Zurück zum Zitat Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45:13 Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45:13
Zurück zum Zitat Garvey CJ, Parker IH, Simon GP (2005) On the Interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres macromol. Chem Phys 206:1568–1575. doi:10.1002/macp.200500008 Garvey CJ, Parker IH, Simon GP (2005) On the Interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres macromol. Chem Phys 206:1568–1575. doi:10.​1002/​macp.​200500008
Zurück zum Zitat Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef
Zurück zum Zitat Khalil HA, Bhat A, Ireana Yusra A (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979CrossRef Khalil HA, Bhat A, Ireana Yusra A (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979CrossRef
Zurück zum Zitat Krässig HA (1993) Cellulose: structure accessibility and reactivity. Polymer monographs; 0275–5777 v. 11. Gordon and Breach Science, Yverdon, Switzerland Krässig HA (1993) Cellulose: structure accessibility and reactivity. Polymer monographs; 0275–5777 v. 11. Gordon and Breach Science, Yverdon, Switzerland
Zurück zum Zitat Lai S-M, Yeh F-C, Wang Y, Chan H-C, Shen H-F (2003) Comparative study of maleated polyolefins as compatibilizers for polyethylene/wood flour composites. J Appl Polym Sci 87:487–496. doi:10.1002/app.11419 CrossRef Lai S-M, Yeh F-C, Wang Y, Chan H-C, Shen H-F (2003) Comparative study of maleated polyolefins as compatibilizers for polyethylene/wood flour composites. J Appl Polym Sci 87:487–496. doi:10.​1002/​app.​11419 CrossRef
Zurück zum Zitat Liu Y (2013) Recent progress in fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials 6:299–313CrossRef Liu Y (2013) Recent progress in fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials 6:299–313CrossRef
Zurück zum Zitat Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR Spectroscopy. Wood Sci Technol 35:191–201. doi:10.1007/s002260100097 CrossRef Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR Spectroscopy. Wood Sci Technol 35:191–201. doi:10.​1007/​s002260100097 CrossRef
Zurück zum Zitat Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromolecules 13:4118–4125. doi:10.1021/bm301378n CrossRef Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromolecules 13:4118–4125. doi:10.​1021/​bm301378n CrossRef
Zurück zum Zitat Morris V, Ring S, MacDougall A, Wilson R (2003) Biophysical characterization of plant cell walls. In: Rose JKC (ed) The plant cell wall. Blackwell, Oxford, pp 55–91 Morris V, Ring S, MacDougall A, Wilson R (2003) Biophysical characterization of plant cell walls. In: Rose JKC (ed) The plant cell wall. Blackwell, Oxford, pp 55–91
Zurück zum Zitat Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. doi:10.1186/1754-6834-3-10 CrossRef Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. doi:10.​1186/​1754-6834-3-10 CrossRef
Zurück zum Zitat Popescu C-M, Popescu M-C, Vasile C (2010) Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchem J 95:377–387CrossRef Popescu C-M, Popescu M-C, Vasile C (2010) Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchem J 95:377–387CrossRef
Zurück zum Zitat Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohyd Res 345:965–970CrossRef Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohyd Res 345:965–970CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Szymanska-Chargot M, Zdunek A (2013) Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys 8:29–42CrossRef Szymanska-Chargot M, Zdunek A (2013) Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys 8:29–42CrossRef
Zurück zum Zitat Wang Q, Chen Q, Niida H, Mitsumura N, Endo T (2014) Effect of water content on crystalline structure of ionic liquids mixture pretreated microcrystalline cellulose (MCC). Mater Sci Appl 2014:183–192 Wang Q, Chen Q, Niida H, Mitsumura N, Endo T (2014) Effect of water content on crystalline structure of ionic liquids mixture pretreated microcrystalline cellulose (MCC). Mater Sci Appl 2014:183–192
Zurück zum Zitat Xu X, Liu F, Jiang L, Zhu J, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals versus cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef Xu X, Liu F, Jiang L, Zhu J, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals versus cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef
Metadaten
Titel
Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application
verfasst von
Arie Mulyadi
Yulin Deng
Publikationsdatum
22.10.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0787-8

Weitere Artikel der Ausgabe 1/2016

Cellulose 1/2016 Zur Ausgabe