Skip to main content
Erschienen in: Cellulose 1/2016

27.10.2015 | Original Paper

Modification of nanocrystalline cellulose for application as a reinforcing nanofiller in PMMA composites

verfasst von: Alojz Anžlovar, Miro Huskić, Ema Žagar

Erschienen in: Cellulose | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocrystalline cellulose (NCC) with particle length of 100–500 nm was prepared from microcrystalline cellulose and modified with a reversible addition–fragmentation chain transfer (RAFT) agent, i.e., 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPADB). From the surface of CPADB-modified NCC, methyl methacrylate (MMA) was grafted to produce poly(methyl methacrylate) (PMMA)-modified NCC. Unmodified NCC, CPADB-modified NCC, and PMMA-modified NCC were further used as reinforcing nanofillers in PMMA composite plates prepared by bulk polymerization of MMA. Regardless of NCC type, the PMMA plates were transparent to visible light at low NCC concentrations but became translucent with increasing NCC concentration. At given NCC concentration, the visible-light transparency of the PMMA/NCC composites decreased in the order PMMA-modified NCC, CPADB-modified NCC, unmodified NCC. PMMA-modified NCC and CPADB-modified NCC showed moderate potential for reinforcing the PMMA matrix, while unmodified NCC detrimentally affected the mechanical properties of the PMMA composites due to more pronounced particle aggregation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Anžlovar A, Orel ZC, Kogej K, Žigon M (2012) Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly(methyl methacrylate). J Nanomater 2012:760872 Anžlovar A, Orel ZC, Kogej K, Žigon M (2012) Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly(methyl methacrylate). J Nanomater 2012:760872
Zurück zum Zitat Barsbay M, Gluven O, Davis TP, Kowollik CB, Barner L (2009) RAFT-mediated polymerization and grafting of sodium 4-styrene sulphonate from cellulose initiated via γ-radiation. Polymer 50:973–982CrossRef Barsbay M, Gluven O, Davis TP, Kowollik CB, Barner L (2009) RAFT-mediated polymerization and grafting of sodium 4-styrene sulphonate from cellulose initiated via γ-radiation. Polymer 50:973–982CrossRef
Zurück zum Zitat Bataille P, Statioukha G, Statioukha O (1996) Simulation and optimization of cellulose and styrene graft copolymerization process. Can J Chem Eng 74(4):501–510CrossRef Bataille P, Statioukha G, Statioukha O (1996) Simulation and optimization of cellulose and styrene graft copolymerization process. Can J Chem Eng 74(4):501–510CrossRef
Zurück zum Zitat Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRef Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRef
Zurück zum Zitat Carlmark A (2013) Tailoring cellulose surfaces by controlled polymerization methods. Macromol Chem Phys 214:1539–1544CrossRef Carlmark A (2013) Tailoring cellulose surfaces by controlled polymerization methods. Macromol Chem Phys 214:1539–1544CrossRef
Zurück zum Zitat Cohen SG, Haas HC (1950) Studies on the structure of hydroxyethylcellulose. J Am Chem Soc 72:3954–3958CrossRef Cohen SG, Haas HC (1950) Studies on the structure of hydroxyethylcellulose. J Am Chem Soc 72:3954–3958CrossRef
Zurück zum Zitat Cooper W, Smith RK (1960) Pfropfpolymere aus cellulose und äthylenimin. Makromol Chem 40:148–160CrossRef Cooper W, Smith RK (1960) Pfropfpolymere aus cellulose und äthylenimin. Makromol Chem 40:148–160CrossRef
Zurück zum Zitat Ding P, Zhang J, Song N, Tang SF, Liu YM, Shi LY (2015) Growing polystyrene chains from the surface of graphene layers via RAFT polymerization and the influence on their thermal properties. Comp Part A Appl Sci Manuf 69:186–194CrossRef Ding P, Zhang J, Song N, Tang SF, Liu YM, Shi LY (2015) Growing polystyrene chains from the surface of graphene layers via RAFT polymerization and the influence on their thermal properties. Comp Part A Appl Sci Manuf 69:186–194CrossRef
Zurück zum Zitat Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef
Zurück zum Zitat Duran N, Lemes AP, Seabra AB (2012) Review of cellulose nanocrystal patents: preparation, composites and general applications. Recent Pat Nanotechnol 6:16–28CrossRef Duran N, Lemes AP, Seabra AB (2012) Review of cellulose nanocrystal patents: preparation, composites and general applications. Recent Pat Nanotechnol 6:16–28CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
Zurück zum Zitat Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRef Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRef
Zurück zum Zitat Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619CrossRef Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619CrossRef
Zurück zum Zitat Hanson S, Trouillet V, Tischer T, Goldmann AS, Carlmark A, Barner-Kowollik C, Malmstroem E (2013) Grafting efficiency of synthetic polymers onto biomaterials: a comparative study of grafting-from versus grafting-to. Biomacromolecules 14:64–74CrossRef Hanson S, Trouillet V, Tischer T, Goldmann AS, Carlmark A, Barner-Kowollik C, Malmstroem E (2013) Grafting efficiency of synthetic polymers onto biomaterials: a comparative study of grafting-from versus grafting-to. Biomacromolecules 14:64–74CrossRef
Zurück zum Zitat Hernandez-Guerrero M, Davis TP, Barner-Kowollik C, Stenzel MH (2005) Polystyrene comb polymers built on cellulose or poly(styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films. Eur Polym J 41:2264–2277CrossRef Hernandez-Guerrero M, Davis TP, Barner-Kowollik C, Stenzel MH (2005) Polystyrene comb polymers built on cellulose or poly(styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films. Eur Polym J 41:2264–2277CrossRef
Zurück zum Zitat Hon NSD, Shiraishi N (2000) Wood and cellulosic chemistry. Marcel Dekker, New York, p 297 Hon NSD, Shiraishi N (2000) Wood and cellulosic chemistry. Marcel Dekker, New York, p 297
Zurück zum Zitat Huebner D, Koch V, Ebeling B, Mechau J, Steinhoff JE, Vana P (2015) Comparison of monomethoxy-, dimethoxy-, and trimethoxysilane anchor groups for surface-initiated RAFT polymerization from silica surfaces. J Polym Sci Part A Polym Chem 53(1):103–113CrossRef Huebner D, Koch V, Ebeling B, Mechau J, Steinhoff JE, Vana P (2015) Comparison of monomethoxy-, dimethoxy-, and trimethoxysilane anchor groups for surface-initiated RAFT polymerization from silica surfaces. J Polym Sci Part A Polym Chem 53(1):103–113CrossRef
Zurück zum Zitat Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011:837875 Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011:837875
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindstroem T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstroem T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
Zurück zum Zitat Kos T, Anžlovar A, Pahovnik D, Žagar E, Orel ZC, Žigon M (2013) Zinc-containing block copolymer as a precursor for the in situ formation of nano ZnO and PMMA/ZnO nanocomposites. Macromolecules 46:6942–6948CrossRef Kos T, Anžlovar A, Pahovnik D, Žagar E, Orel ZC, Žigon M (2013) Zinc-containing block copolymer as a precursor for the in situ formation of nano ZnO and PMMA/ZnO nanocomposites. Macromolecules 46:6942–6948CrossRef
Zurück zum Zitat Kos T, Anžlovar A, Kunaver M, Huskić M, Žagar E (2014a) Fast preparation of nanocrystalline cellulose by microwave-assisted hydrolysis. Cellulose 21:2579–2585CrossRef Kos T, Anžlovar A, Kunaver M, Huskić M, Žagar E (2014a) Fast preparation of nanocrystalline cellulose by microwave-assisted hydrolysis. Cellulose 21:2579–2585CrossRef
Zurück zum Zitat Kos T, Anžlovar A, Žagar E, Orel ZC, Žigon M (2014b) PMMA-b-PMAA diblock copolymer as a reactive polymeric surfactant for the functionalization of ZnO nanoparticles. Acta Chim Slov 61:497–505 Kos T, Anžlovar A, Žagar E, Orel ZC, Žigon M (2014b) PMMA-b-PMAA diblock copolymer as a reactive polymeric surfactant for the functionalization of ZnO nanoparticles. Acta Chim Slov 61:497–505
Zurück zum Zitat Lahiji RR, Xu X, Riefenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488CrossRef Lahiji RR, Xu X, Riefenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488CrossRef
Zurück zum Zitat Landry V, Alemdar A, Blanchet P (2011) Nanocrystalline cellulose: morphological, physical and mechanical properties. For Prod J 61(2):104–112 Landry V, Alemdar A, Blanchet P (2011) Nanocrystalline cellulose: morphological, physical and mechanical properties. For Prod J 61(2):104–112
Zurück zum Zitat Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739CrossRef Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739CrossRef
Zurück zum Zitat Ljungberg N, Cavaille JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292CrossRef Ljungberg N, Cavaille JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292CrossRef
Zurück zum Zitat Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296CrossRef Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296CrossRef
Zurück zum Zitat Mais U, Binder WH, Knaus S, Gruber H (2000) Synthesis and 13C CP MAS NMR spectroscopy of cellulose-graft-poly(N-acetylenimine). Macromol Chem Phys 201:2115–2122CrossRef Mais U, Binder WH, Knaus S, Gruber H (2000) Synthesis and 13C CP MAS NMR spectroscopy of cellulose-graft-poly(N-acetylenimine). Macromol Chem Phys 201:2115–2122CrossRef
Zurück zum Zitat Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and n anocomposites: a critical review. Cellulose 20:2221–2262CrossRef Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and n anocomposites: a critical review. Cellulose 20:2221–2262CrossRef
Zurück zum Zitat Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410CrossRef Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410CrossRef
Zurück zum Zitat Moad G, Rizzardo E, Thang SH (2006) Living radical polymerization by the RAFT process—a first update. Aust J Chem 59:669–692CrossRef Moad G, Rizzardo E, Thang SH (2006) Living radical polymerization by the RAFT process—a first update. Aust J Chem 59:669–692CrossRef
Zurück zum Zitat Neises B, Steglich W (1987) Simple method for the esterification of carboxylic acids. Angew Chem Int Ed 17:522–524CrossRef Neises B, Steglich W (1987) Simple method for the esterification of carboxylic acids. Angew Chem Int Ed 17:522–524CrossRef
Zurück zum Zitat Pavoni E, Bandini E, Benaglia M, Molloy JK, Bergamini G, Ceroni P, Armaroli N (2014) A tailored RAFT copolymer for the dispersion of single walled carbon nanotubes in aqueous media. Polym Chem 5(21):6148–6150CrossRef Pavoni E, Bandini E, Benaglia M, Molloy JK, Bergamini G, Ceroni P, Armaroli N (2014) A tailored RAFT copolymer for the dispersion of single walled carbon nanotubes in aqueous media. Polym Chem 5(21):6148–6150CrossRef
Zurück zum Zitat Pei A, Malho JM, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRef Pei A, Malho JM, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRef
Zurück zum Zitat Rouganin ZA, Zhu UZ (1959) Synthesis of new cellulose and other polysaccharide derivatives—IV The synthesis of carboxymethylcellulose and polycaprolactam graft copolymers. Vyskomol Soed 1(11):1630–1633 Rouganin ZA, Zhu UZ (1959) Synthesis of new cellulose and other polysaccharide derivatives—IV The synthesis of carboxymethylcellulose and polycaprolactam graft copolymers. Vyskomol Soed 1(11):1630–1633
Zurück zum Zitat Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372CrossRef Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372CrossRef
Zurück zum Zitat Šturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061CrossRef Šturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061CrossRef
Zurück zum Zitat Tang YF, Xiang R, Wang M, Zhu JL, Sun TM, Jiang GQ (2014) A biocompatible block glycopolymeric dispersant: synthesis, characterization, and dispersing properties for nano-TiO2. Coll Polym Sci 292(9):2369–2374CrossRef Tang YF, Xiang R, Wang M, Zhu JL, Sun TM, Jiang GQ (2014) A biocompatible block glycopolymeric dispersant: synthesis, characterization, and dispersing properties for nano-TiO2. Coll Polym Sci 292(9):2369–2374CrossRef
Zurück zum Zitat Tastet D, Save M, Charrier F, Charrier B, Ledeuil JB, Dupin JC, Billon L (2011) Functional biohybrid materials synthesized via surface-initiated MADIX/RAFT polymerization from renewable natural wood fiber: grafting of polymer as non leaching preservative. Polymer 52:606–616CrossRef Tastet D, Save M, Charrier F, Charrier B, Ledeuil JB, Dupin JC, Billon L (2011) Functional biohybrid materials synthesized via surface-initiated MADIX/RAFT polymerization from renewable natural wood fiber: grafting of polymer as non leaching preservative. Polymer 52:606–616CrossRef
Zurück zum Zitat Xu A, Zhang Y, Zhao Y, Wang J (2013a) Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr Polym 92:540–544CrossRef Xu A, Zhang Y, Zhao Y, Wang J (2013a) Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr Polym 92:540–544CrossRef
Zurück zum Zitat Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn P (2013b) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interf 5:2999–3009CrossRef Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn P (2013b) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interf 5:2999–3009CrossRef
Zurück zum Zitat Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC, Xie XM (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22:22467–22480CrossRef Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC, Xie XM (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22:22467–22480CrossRef
Zurück zum Zitat Yi J, Liu ZT, Liu ZW (2010) Grafting of polystyrene and poly(p-chlorostyrene) from the surface of ramie fiber via RAFT polymerization. J Appl Polym Sci 117:3550–3557 Yi J, Liu ZT, Liu ZW (2010) Grafting of polystyrene and poly(p-chlorostyrene) from the surface of ramie fiber via RAFT polymerization. J Appl Polym Sci 117:3550–3557
Zurück zum Zitat Zahran MK (1996) Graft copolymerization of methyl methacrylate and other vinyl monomers onto cotton fabric using ferrous cellulose thiocarbonate-N-bromosuccinimide redox initiation system. J Appl Polym Sci 62(1):49–57CrossRef Zahran MK (1996) Graft copolymerization of methyl methacrylate and other vinyl monomers onto cotton fabric using ferrous cellulose thiocarbonate-N-bromosuccinimide redox initiation system. J Appl Polym Sci 62(1):49–57CrossRef
Zurück zum Zitat Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behaviour. RSC Adv 4:31428–31442CrossRef Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behaviour. RSC Adv 4:31428–31442CrossRef
Zurück zum Zitat Zhang J, Zhang H, Wu J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose salvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947CrossRef Zhang J, Zhang H, Wu J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose salvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947CrossRef
Zurück zum Zitat Zhou C, Chu R, Wu R, Wu Q (2011a) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625CrossRef Zhou C, Chu R, Wu R, Wu Q (2011a) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625CrossRef
Zurück zum Zitat Zhou C, Wu Q, Yue Y, Zhang Q (2011b) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Coll Interface Sci 353:116–123CrossRef Zhou C, Wu Q, Yue Y, Zhang Q (2011b) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Coll Interface Sci 353:116–123CrossRef
Metadaten
Titel
Modification of nanocrystalline cellulose for application as a reinforcing nanofiller in PMMA composites
verfasst von
Alojz Anžlovar
Miro Huskić
Ema Žagar
Publikationsdatum
27.10.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0786-9

Weitere Artikel der Ausgabe 1/2016

Cellulose 1/2016 Zur Ausgabe