Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Structural and Multidisciplinary Optimization 4/2018

20.02.2018 | RESEARCH PAPER

Surrogate-based global optimization using an adaptive switching infill sampling criterion for expensive black-box functions

verfasst von: In-Bum Chung, Dohyun Park, Dong-Hoon Choi

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Surrogate-based global optimization algorithms use a surrogate model along with a sampling criterion. The AMP-SBGO algorithm sequentially samples points to gradually find the global optimum. The sampling criterion used to decide where to sample in each iteration dominates the algorithm and directly impacts its efficiency and robustness. This paper presents a method that uses multiple criteria for each phase of sampling, with conditions for switching from one criterion to another. Such behavior can improve the performance of the algorithm by allowing the optimization process to be less influenced by the initial sample points. Each phase, referred to as the global search phase and local search phase, utilizes different techniques. For the global search, a weighted maximin distance metric is proposed that is more efficient than ordinary maximin distance searches, and for the local search, the surrogate is optimized using a multi-start gradient-based optimizer. The algorithm was tested on 9 unconstrained mathematical test functions and 4 classes of GKLS functions along with 5 constrained test problems, which included 4 engineering design problems, and showed significant improvements compared to existing surrogate-based global optimization algorithms. The algorithm was then implemented to optimize the shape of a flange shaft in a washing machine.
Literatur
Zurück zum Zitat Bjorkman M, Holmstrom K (2000) Global optimisation of costly nonconvex functions using radial basis functions. Optim Eng 1:373–397 MathSciNetCrossRefMATH Bjorkman M, Holmstrom K (2000) Global optimisation of costly nonconvex functions using radial basis functions. Optim Eng 1:373–397 MathSciNetCrossRefMATH
Zurück zum Zitat Dixon LCW, Szego GP (1978) The global optimisation problem: an introduction. In: Dixon LCW and Szego GP (eds) Towards Global Optimisation 2, North-Holland Amsterdam, pp 1–15 Dixon LCW, Szego GP (1978) The global optimisation problem: an introduction. In: Dixon LCW and Szego GP (eds) Towards Global Optimisation 2, North-Holland Amsterdam, pp 1–15
Zurück zum Zitat Dong H, Song B, Dong Z, Wang P (2016) Multi-start space reduction (MSSR) surrogate-based global optimization method. Struct Multidisc Optim 54:907–926 CrossRef Dong H, Song B, Dong Z, Wang P (2016) Multi-start space reduction (MSSR) surrogate-based global optimization method. Struct Multidisc Optim 54:907–926 CrossRef
Zurück zum Zitat Garg H (2014) Solving structural engineering design optimization problems using an artificial bee colony algorithm. J Ind Manag Optim 10(3):777–794 MathSciNetCrossRefMATH Garg H (2014) Solving structural engineering design optimization problems using an artificial bee colony algorithm. J Ind Manag Optim 10(3):777–794 MathSciNetCrossRefMATH
Zurück zum Zitat Gaviano M, Kvasov DE, Lera D, Sergeyev YD (2003) Algorithm 829: software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans Math Softw 29(4):469–480 MathSciNetCrossRefMATH Gaviano M, Kvasov DE, Lera D, Sergeyev YD (2003) Algorithm 829: software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans Math Softw 29(4):469–480 MathSciNetCrossRefMATH
Zurück zum Zitat Iman RL (2008) Latin hypercube sampling, encyclopedia of quantitative risk analysis and assessment. Wiley, New York Iman RL (2008) Latin hypercube sampling, encyclopedia of quantitative risk analysis and assessment. Wiley, New York
Zurück zum Zitat Jie H, Wu Y, Ding J (2015) An adaptive metamodel-based global optimization algorithm for black-box type problems. Eng Optim 47(11):1459–1480 MathSciNetCrossRef Jie H, Wu Y, Ding J (2015) An adaptive metamodel-based global optimization algorithm for black-box type problems. Eng Optim 47(11):1459–1480 MathSciNetCrossRef
Zurück zum Zitat Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximin distance designs. J Stat Plann Inference 26:131–148 MathSciNetCrossRef Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximin distance designs. J Stat Plann Inference 26:131–148 MathSciNetCrossRef
Zurück zum Zitat Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:455–492 MathSciNetCrossRefMATH Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:455–492 MathSciNetCrossRefMATH
Zurück zum Zitat Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN, Coello CAC, Deb K (2006) Problem definitions and evalutation criteria for the CEC 2006 special session on constrained real-parameter optimization. J Appl Mech 41:8 Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN, Coello CAC, Deb K (2006) Problem definitions and evalutation criteria for the CEC 2006 special session on constrained real-parameter optimization. J Appl Mech 41:8
Zurück zum Zitat Liu H, Xu S, Ma Y, Wang X (2015) Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces. J Glob Optim 63(2):229–251 MathSciNetCrossRefMATH Liu H, Xu S, Ma Y, Wang X (2015) Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces. J Glob Optim 63(2):229–251 MathSciNetCrossRefMATH
Zurück zum Zitat Liu H, Xu S, Chen X, Wang X, Ma Q (2017) Constrained global optimization via a DIRECT-type constraint-handling technique and an adaptive metamodeling strategy. Struct Multidiscip Optim 55:155–177 MathSciNetCrossRef Liu H, Xu S, Chen X, Wang X, Ma Q (2017) Constrained global optimization via a DIRECT-type constraint-handling technique and an adaptive metamodeling strategy. Struct Multidiscip Optim 55:155–177 MathSciNetCrossRef
Zurück zum Zitat Long T, Wu D, Guo X, Wang GG, Liu L (2015) Efficient adaptive response surface method using intelligent space exploration strategy. Struct Multidiscip Optim 51:1335–1362 CrossRef Long T, Wu D, Guo X, Wang GG, Liu L (2015) Efficient adaptive response surface method using intelligent space exploration strategy. Struct Multidiscip Optim 51:1335–1362 CrossRef
Zurück zum Zitat Orr MJL (1996) Introduction to radial basis function networks. Centre for Cognitive Science, University of Edinburgh, Edinburgh Orr MJL (1996) Introduction to radial basis function networks. Centre for Cognitive Science, University of Edinburgh, Edinburgh
Zurück zum Zitat Park D, Chung IB, Choi DH (2018) Surrogate based global optimization using adaptive switching infill sampling criterion. In: Schumacher A, Vietor T, Fiebig S, Bletzinger KU, Maute K (eds) Advances in structural and multidisciplinary optimization. WCSMO 2017. Springer, Cham, pp 692-699 Park D, Chung IB, Choi DH (2018) Surrogate based global optimization using adaptive switching infill sampling criterion. In: Schumacher A, Vietor T, Fiebig S, Bletzinger KU, Maute K (eds) Advances in structural and multidisciplinary optimization. WCSMO 2017. Springer, Cham, pp 692-699
Zurück zum Zitat Parr JM, Forrester AIJ, Keane AJ, Holden CME (2012) Enhancing infill sampling criteria for surrogate-based constrained optimization. J Comput Methods Sci Eng 12:25–45 MathSciNetMATH Parr JM, Forrester AIJ, Keane AJ, Holden CME (2012) Enhancing infill sampling criteria for surrogate-based constrained optimization. J Comput Methods Sci Eng 12:25–45 MathSciNetMATH
Zurück zum Zitat Regis RG, Shoemaker CA (2007) Improved strategies for radial basis function methods for global optimization. J Glob Optim 37:113–135 MathSciNetCrossRefMATH Regis RG, Shoemaker CA (2007) Improved strategies for radial basis function methods for global optimization. J Glob Optim 37:113–135 MathSciNetCrossRefMATH
Zurück zum Zitat Sasena MJ (2002) Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations, Dissertation, University of Michigan Sasena MJ (2002) Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations, Dissertation, University of Michigan
Zurück zum Zitat Schonlau M (1997) Computer experiments and global optimization, Dissertation, University of Waterloo Schonlau M (1997) Computer experiments and global optimization, Dissertation, University of Waterloo
Zurück zum Zitat Shewry MC, Wynn HP (1987) Maximum entropy sampling. J Appl Stat 14:165–170 CrossRef Shewry MC, Wynn HP (1987) Maximum entropy sampling. J Appl Stat 14:165–170 CrossRef
Zurück zum Zitat Sobester A, Leary SJ, Keane AJ (2005) On the design of optimization strategies based on global response surface approximation models. J Glob Optim 33:31–59 MathSciNetCrossRefMATH Sobester A, Leary SJ, Keane AJ (2005) On the design of optimization strategies based on global response surface approximation models. J Glob Optim 33:31–59 MathSciNetCrossRefMATH
Zurück zum Zitat Xu X, Meng Z, Sun J, Huang L, Shen R (2012) A second-order smooth penalty function algorithm for constrained optimization problems. Comput Optim Appl 55:155–172 MathSciNetCrossRefMATH Xu X, Meng Z, Sun J, Huang L, Shen R (2012) A second-order smooth penalty function algorithm for constrained optimization problems. Comput Optim Appl 55:155–172 MathSciNetCrossRefMATH
Zurück zum Zitat Yang XS (2010) Nature inspired metaheuristic algorithms, 2nd edn. Luniver Press, United Kingdom Yang XS (2010) Nature inspired metaheuristic algorithms, 2nd edn. Luniver Press, United Kingdom
Zurück zum Zitat Ye KQ, Li W, Sudjianto A (2000) Algorithmic construction of optimal symmetric Latin hypercube designs. J Stat Plann Inference 90:145–159 MathSciNetCrossRefMATH Ye KQ, Li W, Sudjianto A (2000) Algorithmic construction of optimal symmetric Latin hypercube designs. J Stat Plann Inference 90:145–159 MathSciNetCrossRefMATH
Metadaten
Titel
Surrogate-based global optimization using an adaptive switching infill sampling criterion for expensive black-box functions
verfasst von
In-Bum Chung
Dohyun Park
Dong-Hoon Choi
Publikationsdatum
20.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-1942-2

Weitere Artikel der Ausgabe 4/2018

Structural and Multidisciplinary Optimization 4/2018 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.