Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2020

03.06.2020 | Research Paper

Survey of the mechanisms of power take-off (PTO) devices of wave energy converters

verfasst von: Z. Liu, R. Zhang, H. Xiao, X. Wang

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ocean wave energy conversion as one of the renewable clean energy sources is attracting the research interests of many people. This review introduces different types of power take-off (PTO) technology of wave energy converters. The novelty of this paper is to present advantages and disadvantages of the linear direct and indirect drive PTO devices for ocean wave energy conversion. The designs and optimizations of PTO systems of ocean wave energy converters have been studied from reviewing the recently published literature. The novel mechanical designs of the PTO systems have been compared and investigated in order to increase the energy harvesting efficiency.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Glendenning, I.: Ocean wave power. Appl. Energy 3(3), 197–222 (1977) Glendenning, I.: Ocean wave power. Appl. Energy 3(3), 197–222 (1977)
2.
Zurück zum Zitat Falnes, J.: A review of wave-energy extraction. Mar. Struct. 20(4), 185–201 (2007) Falnes, J.: A review of wave-energy extraction. Mar. Struct. 20(4), 185–201 (2007)
3.
Zurück zum Zitat International Renewable Energy Agency (IRENA). Wave Energy. Technology Brief (2014) International Renewable Energy Agency (IRENA). Wave Energy. Technology Brief (2014)
4.
Zurück zum Zitat Clément, A., McCullen, P., Falcão, A., et al.: Wave energy in Europe: current status and perspectives. Renewable Sustainable Energy Rev. 6(5), 405–431 (2002) Clément, A., McCullen, P., Falcão, A., et al.: Wave energy in Europe: current status and perspectives. Renewable Sustainable Energy Rev. 6(5), 405–431 (2002)
5.
Zurück zum Zitat Pelc, R., Fujita, R.M.: Renewable energy from the ocean. Mar. Policy 26(6), 471–479 (2002) Pelc, R., Fujita, R.M.: Renewable energy from the ocean. Mar. Policy 26(6), 471–479 (2002)
7.
Zurück zum Zitat Beatty, S.J., Hall, M., Buckham, B.J., et al.: Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves. Ocean Eng. 104, 370–386 (2015) Beatty, S.J., Hall, M., Buckham, B.J., et al.: Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves. Ocean Eng. 104, 370–386 (2015)
8.
Zurück zum Zitat Falnes, J.: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-energy Extraction. Cambridge University Press, Cambridge (2002) Falnes, J.: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-energy Extraction. Cambridge University Press, Cambridge (2002)
9.
Zurück zum Zitat Evans, D.V., de Falcão, A.F.O.: Hydrodynamics of Ocean Wave-energy Utilization (No CONF-850741). Springer, New York (1985) Evans, D.V., de Falcão, A.F.O.: Hydrodynamics of Ocean Wave-energy Utilization (No CONF-850741). Springer, New York (1985)
10.
Zurück zum Zitat Morim, J., Cartwright, N., Etemad-Shahidi, A., et al.: A review of wave energy estimates for nearshore shelf waters off Australia. Int. J. Mar. Sci. 7, 57–70 (2014) Morim, J., Cartwright, N., Etemad-Shahidi, A., et al.: A review of wave energy estimates for nearshore shelf waters off Australia. Int. J. Mar. Sci. 7, 57–70 (2014)
11.
Zurück zum Zitat Illesinghe, S.J., Manasseh, R., Dargaville, R., et al.: Idealized design parameters of wave energy converters in a range of ocean wave climates. Int. J. Mar. Sci. 19, 55–69 (2017) Illesinghe, S.J., Manasseh, R., Dargaville, R., et al.: Idealized design parameters of wave energy converters in a range of ocean wave climates. Int. J. Mar. Sci. 19, 55–69 (2017)
12.
Zurück zum Zitat Barstow, S., Mørk, G., Lønseth, L., et al.: WorldWaves wave energy resource assessments from the deep ocean to the coast. J. Energy Power Eng. 5(8), 730–742 (2011) Barstow, S., Mørk, G., Lønseth, L., et al.: WorldWaves wave energy resource assessments from the deep ocean to the coast. J. Energy Power Eng. 5(8), 730–742 (2011)
13.
Zurück zum Zitat Barstow, S., Mørk, G., Mollison, D., et al.: The wave energy resource. In: Cruz, J. (ed.) Ocean Wave Energy, pp. 93–132. Springer, Berlin (2008) Barstow, S., Mørk, G., Mollison, D., et al.: The wave energy resource. In: Cruz, J. (ed.) Ocean Wave Energy, pp. 93–132. Springer, Berlin (2008)
14.
Zurück zum Zitat Chen, L.F., Zang, J., Hillis, A.J., et al.: Numerical investigation of wave–structure interaction using OpenFOAM. Ocean Eng. 88, 91–109 (2014) Chen, L.F., Zang, J., Hillis, A.J., et al.: Numerical investigation of wave–structure interaction using OpenFOAM. Ocean Eng. 88, 91–109 (2014)
15.
Zurück zum Zitat Liu, Y., Xu, L., Zuo, L.: Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism. IEEE ASME Trans. Mech. 22(5), 1933–1943 (2017) Liu, Y., Xu, L., Zuo, L.: Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism. IEEE ASME Trans. Mech. 22(5), 1933–1943 (2017)
16.
Zurück zum Zitat Polinder, H., Mecrow, B.C., Jack, A.G., et al.: Conventional and TFPM linear generators for direct-drive wave energy conversion. IEEE Trans. Energy Convers. 20(2), 260–267 (2005) Polinder, H., Mecrow, B.C., Jack, A.G., et al.: Conventional and TFPM linear generators for direct-drive wave energy conversion. IEEE Trans. Energy Convers. 20(2), 260–267 (2005)
17.
Zurück zum Zitat Babarit, A., Clément, A.H.: Optimal latching control of a wave energy device in regular and irregular waves. Appl. Ocean Res. 28(2), 77–91 (2006) Babarit, A., Clément, A.H.: Optimal latching control of a wave energy device in regular and irregular waves. Appl. Ocean Res. 28(2), 77–91 (2006)
18.
Zurück zum Zitat Babarit, A.: Ocean Wave Energy Conversion: Resource. Elsevier, Technologies and Performance (2017) Babarit, A.: Ocean Wave Energy Conversion: Resource. Elsevier, Technologies and Performance (2017)
19.
Zurück zum Zitat Drew, B., Plummer, A.R., Sahinkaya, M.N.: A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 223(8), 887–902 (2009) Drew, B., Plummer, A.R., Sahinkaya, M.N.: A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 223(8), 887–902 (2009)
20.
Zurück zum Zitat Albert, A., Berselli, G., Bruzzone, L., et al.: Mechanical design and simulation of an onshore four-bar wave energy converter. Renewable Energy 114, 766–774 (2017) Albert, A., Berselli, G., Bruzzone, L., et al.: Mechanical design and simulation of an onshore four-bar wave energy converter. Renewable Energy 114, 766–774 (2017)
22.
Zurück zum Zitat López, I., Andreu, J., Ceballos, S., et al.: Review of wave energy technologies and the necessary power-equipment. Renewable Sustainable Energy Rev. 27, 413–434 (2013) López, I., Andreu, J., Ceballos, S., et al.: Review of wave energy technologies and the necessary power-equipment. Renewable Sustainable Energy Rev. 27, 413–434 (2013)
23.
Zurück zum Zitat Masuda, Y.: Wave-activated generator. in: Int. Coll. on the Expositions of the Oceans (Trans.), Bordeaux, France (1971) Masuda, Y.: Wave-activated generator. in: Int. Coll. on the Expositions of the Oceans (Trans.), Bordeaux, France (1971)
24.
Zurück zum Zitat Masuda, Y.: Experimental full-scale results of wave power machine Kaimei in 1978. in: Proc First Symp Wave Energy Utilization, Gothenburg, Sweden, 349-363 (1979) Masuda, Y.: Experimental full-scale results of wave power machine Kaimei in 1978. in: Proc First Symp Wave Energy Utilization, Gothenburg, Sweden, 349-363 (1979)
25.
Zurück zum Zitat Whittaker, T.J.T., Beattie, W., Folley, M., et al.: The Limpet Wave Power Project–the first years of operation. Renewable Energy (2004) Whittaker, T.J.T., Beattie, W., Folley, M., et al.: The Limpet Wave Power Project–the first years of operation. Renewable Energy (2004)
26.
Zurück zum Zitat Bedard, R., Hagerman, G.: E2I EPRI Assessment Offshore Wave Energy Conversion Devices. Washington, DC, USA, Electrical Innovation Institute (2004) Bedard, R., Hagerman, G.: E2I EPRI Assessment Offshore Wave Energy Conversion Devices. Washington, DC, USA, Electrical Innovation Institute (2004)
27.
Zurück zum Zitat Falcão, A.D.O.: The shoreline OWC wave power plant at the Azores. In: Proceedings of 4th European Wave Energy Conference, 42-47 (2000) Falcão, A.D.O.: The shoreline OWC wave power plant at the Azores. In: Proceedings of 4th European Wave Energy Conference, 42-47 (2000)
29.
Zurück zum Zitat Falcão, A.F., Henriques, J.C.: Oscillating-water-column wave energy converters and air turbines: a review. Renewable Energy 85, 1391–1424 (2016) Falcão, A.F., Henriques, J.C.: Oscillating-water-column wave energy converters and air turbines: a review. Renewable Energy 85, 1391–1424 (2016)
30.
Zurück zum Zitat Masuda, Y., Yamazaki, T., Outa, Y., et al.: Study of backward bent duct buoy. In: OCEANS’87, IEEE 384-389 (1987) Masuda, Y., Yamazaki, T., Outa, Y., et al.: Study of backward bent duct buoy. In: OCEANS’87, IEEE 384-389 (1987)
31.
Zurück zum Zitat Washio, Y., Osawa, H., Ogata, T.: The open sea tests of the offshore floating type wave power device Mighty Whale-characteristics of wave energy absorption and power generation. IEEE 1, 579–585 (2001) Washio, Y., Osawa, H., Ogata, T.: The open sea tests of the offshore floating type wave power device Mighty Whale-characteristics of wave energy absorption and power generation. IEEE 1, 579–585 (2001)
32.
Zurück zum Zitat Falcão, A.F., Henriques, J.C., Cândido, J.J.: Dynamics and optimization of the OWC spar buoy wave energy converter. Renewable Energy 48, 369–381 (2012) Falcão, A.F., Henriques, J.C., Cândido, J.J.: Dynamics and optimization of the OWC spar buoy wave energy converter. Renewable Energy 48, 369–381 (2012)
33.
Zurück zum Zitat Whittaker, T.J.T., Langston, D., Fletcher, N., et al.: Islay LIMPET wave power plant. The Queen’s University of Belfast, Contract JOR3-CT98-0312 (2002) Whittaker, T.J.T., Langston, D., Fletcher, N., et al.: Islay LIMPET wave power plant. The Queen’s University of Belfast, Contract JOR3-CT98-0312 (2002)
34.
Zurück zum Zitat Elhanafi, A., Kim, C.J.: Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter. Renewable Energy 125, 518–528 (2018) Elhanafi, A., Kim, C.J.: Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter. Renewable Energy 125, 518–528 (2018)
35.
Zurück zum Zitat Engineering and Technology Magazine (E&T) 3, 26–29 (2008) Engineering and Technology Magazine (E&T) 3, 26–29 (2008)
37.
Zurück zum Zitat Zhang, X., Lu, D., Guo, F., et al.: The maximum wave energy conversion by two interconnected floaters: effects of structural flexibility. Appl. Ocean Res. 71, 34–47 (2018) Zhang, X., Lu, D., Guo, F., et al.: The maximum wave energy conversion by two interconnected floaters: effects of structural flexibility. Appl. Ocean Res. 71, 34–47 (2018)
38.
Zurück zum Zitat Gao, Y., Shao, S., Zou, H., et al.: A fully floating system for a wave energy converter with direct-driven linear generator. Energy 95, 99–109 (2016) Gao, Y., Shao, S., Zou, H., et al.: A fully floating system for a wave energy converter with direct-driven linear generator. Energy 95, 99–109 (2016)
39.
Zurück zum Zitat Trapanese, M., Boscaino, V., Cipriani, G., et al.: A permanent magnet linear generator for the enhancement of the reliability of a wave energy conversion system. IEEE Trans. Ind. Electron. 66(6), 4934–4944 (2018) Trapanese, M., Boscaino, V., Cipriani, G., et al.: A permanent magnet linear generator for the enhancement of the reliability of a wave energy conversion system. IEEE Trans. Ind. Electron. 66(6), 4934–4944 (2018)
41.
Zurück zum Zitat Kofoed, J.P., Frigaard, P., Friis-Madsen, E., et al.: Prototype testing of the wave energy converter wave dragon. Renewable Energy 31(2), 181–189 (2006) Kofoed, J.P., Frigaard, P., Friis-Madsen, E., et al.: Prototype testing of the wave energy converter wave dragon. Renewable Energy 31(2), 181–189 (2006)
44.
Zurück zum Zitat Zhu, G., Su, Y., Bai, P., et al.: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8(6), 6031–6037 (2014) Zhu, G., Su, Y., Bai, P., et al.: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8(6), 6031–6037 (2014)
45.
Zurück zum Zitat Xie, X.D., Wang, Q., Wu, N.: Energy harvesting from transverse ocean waves by a piezoelectric plate. Int. J. Eng. Sci. 81, 41–48 (2014) Xie, X.D., Wang, Q., Wu, N.: Energy harvesting from transverse ocean waves by a piezoelectric plate. Int. J. Eng. Sci. 81, 41–48 (2014)
46.
Zurück zum Zitat Viet, N.V., Wang, Q.: Ocean wave energy pitching harvester with a frequency tuning capability. Energy 162, 603–617 (2018) Viet, N.V., Wang, Q.: Ocean wave energy pitching harvester with a frequency tuning capability. Energy 162, 603–617 (2018)
47.
Zurück zum Zitat Mueller, M.A., Polinder, H., Baker, N.: Current and novel electrical generator technology for wave energy converters. In: 2007 IEEE International Electric Machines & Drives Conference, 2, 1401-1406 (2007) Mueller, M.A., Polinder, H., Baker, N.: Current and novel electrical generator technology for wave energy converters. In: 2007 IEEE International Electric Machines & Drives Conference, 2, 1401-1406 (2007)
48.
Zurück zum Zitat Rhinefrank, K., Schacher, A., Prudell, J., et al.: Comparison of direct-drive power takeoff systems for ocean wave energy applications. IEEE J. Oceanic Eng. 37(1), 35–44 (2011) Rhinefrank, K., Schacher, A., Prudell, J., et al.: Comparison of direct-drive power takeoff systems for ocean wave energy applications. IEEE J. Oceanic Eng. 37(1), 35–44 (2011)
49.
Zurück zum Zitat Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: A split translator secondary stator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans. Ind. Electron. 65(9), 7600–7608 (2017) Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: A split translator secondary stator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans. Ind. Electron. 65(9), 7600–7608 (2017)
50.
Zurück zum Zitat Huang, L., Chen, M., Wang, L., et al.: Analysis of a hybrid field-modulated linear generator for wave energy conversion. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018) Huang, L., Chen, M., Wang, L., et al.: Analysis of a hybrid field-modulated linear generator for wave energy conversion. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018)
51.
Zurück zum Zitat Takao, M., Sato, E., Takeuchi, T., et al.: Sea trial of an impulse turbine for wave energy conversion. in: Proceedings of International Symposium on Eco Topia Science (2007) Takao, M., Sato, E., Takeuchi, T., et al.: Sea trial of an impulse turbine for wave energy conversion. in: Proceedings of International Symposium on Eco Topia Science (2007)
52.
Zurück zum Zitat Setoguchi, T., Takao, M.: Current status of self rectifying air turbines for wave energy conversion. Energy Convers. Manage. 47(15–16), 2382–2396 (2006) Setoguchi, T., Takao, M.: Current status of self rectifying air turbines for wave energy conversion. Energy Convers. Manage. 47(15–16), 2382–2396 (2006)
53.
Zurück zum Zitat Takao, M., Setoguchi, T.: Air turbines for wave energy conversion. Int. J. Rotating Mach. 2012, 717398 (2012) Takao, M., Setoguchi, T.: Air turbines for wave energy conversion. Int. J. Rotating Mach. 2012, 717398 (2012)
54.
Zurück zum Zitat Dixon, S.L., Hall, C.: Fluid Mechanics and Thermodynamics of Turbomachinery. Butterworth-Heinemann, Oxford (2013) Dixon, S.L., Hall, C.: Fluid Mechanics and Thermodynamics of Turbomachinery. Butterworth-Heinemann, Oxford (2013)
56.
Zurück zum Zitat Henderson, R.: Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable Energy 31(2), 271–283 (2006)MathSciNet Henderson, R.: Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable Energy 31(2), 271–283 (2006)MathSciNet
57.
Zurück zum Zitat Weinstein, A., Fredrikson, G., Parks, M.J., et al.: AquaBuOY-the offshore wave energy converter numerical modeling and optimization. IEEE 4, 1854–1859 (2004) Weinstein, A., Fredrikson, G., Parks, M.J., et al.: AquaBuOY-the offshore wave energy converter numerical modeling and optimization. IEEE 4, 1854–1859 (2004)
58.
Zurück zum Zitat Elwood, D., Yim, S.C., Prudell, J., et al.: Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off. Renewable Energy 35(2), 348–354 (2010) Elwood, D., Yim, S.C., Prudell, J., et al.: Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off. Renewable Energy 35(2), 348–354 (2010)
59.
Zurück zum Zitat Huang, L., Yu, H., Hu, M., et al.: A novel flux-switching permanent-magnet linear generator for wave energy extraction application. IEEE Trans. Magn. 47(5), 1034–1037 (2011) Huang, L., Yu, H., Hu, M., et al.: A novel flux-switching permanent-magnet linear generator for wave energy extraction application. IEEE Trans. Magn. 47(5), 1034–1037 (2011)
60.
Zurück zum Zitat Huang, L., Yu, H., Hu, M., et al.: Research on a tubular primary permanent-magnet linear generator for wave energy conversions. IEEE Trans. Magn. 49(5), 1917–1920 (2013) Huang, L., Yu, H., Hu, M., et al.: Research on a tubular primary permanent-magnet linear generator for wave energy conversions. IEEE Trans. Magn. 49(5), 1917–1920 (2013)
61.
Zurück zum Zitat Huang, L., Liu, J., Yu, H., et al.: Winding configuration and performance investigations of a tubular superconducting flux-switching linear generator. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2014) Huang, L., Liu, J., Yu, H., et al.: Winding configuration and performance investigations of a tubular superconducting flux-switching linear generator. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2014)
62.
Zurück zum Zitat Pan, J.F., Zou, Y., Cheung, N., et al.: On the voltage ripple reduction control of the linear switched reluctance generator for wave energy utilization. IEEE Trans. Power Electron. 29(10), 5298–5307 (2013) Pan, J.F., Zou, Y., Cheung, N., et al.: On the voltage ripple reduction control of the linear switched reluctance generator for wave energy utilization. IEEE Trans. Power Electron. 29(10), 5298–5307 (2013)
63.
Zurück zum Zitat Pu, Y., Zhou, S., Gu, J., et al.: A novel linear switch reluctance generator system. In: 2012 IEEE International Conference on Automation and Logistics, 421-427 (2012) Pu, Y., Zhou, S., Gu, J., et al.: A novel linear switch reluctance generator system. In: 2012 IEEE International Conference on Automation and Logistics, 421-427 (2012)
64.
Zurück zum Zitat Mueller, M.A., Baker, N.J.: Modelling the performance of the vernier hybrid machine. Elec. Power Appl. 150(6), 647–654 (2003) Mueller, M.A., Baker, N.J.: Modelling the performance of the vernier hybrid machine. Elec. Power Appl. 150(6), 647–654 (2003)
65.
Zurück zum Zitat Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans. Magn. 53(11), 1–4 (2017) Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans. Magn. 53(11), 1–4 (2017)
66.
Zurück zum Zitat Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: A novel superconducting magnet excited linear generator for wave energy conversion system. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016) Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: A novel superconducting magnet excited linear generator for wave energy conversion system. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016)
67.
Zurück zum Zitat Sui, Y., Zheng, P., Tong, C., et al.: Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter. J. Appl. Phys. 117(17), 17B519 (2015) Sui, Y., Zheng, P., Tong, C., et al.: Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter. J. Appl. Phys. 117(17), 17B519 (2015)
68.
Zurück zum Zitat Farrok, O., Islam, M.R., Guo, Y., et al.: A novel design procedure for designing linear generators. IEEE Trans. Ind. Electron. 65(2), 1846–1854 (2017) Farrok, O., Islam, M.R., Guo, Y., et al.: A novel design procedure for designing linear generators. IEEE Trans. Ind. Electron. 65(2), 1846–1854 (2017)
69.
Zurück zum Zitat Pan, J.F., Li, Q., Wu, X., et al.: Complementary power generation of double linear switched reluctance generators for wave power exploitation. Int. J. Electr. Power Energy Syst. 106, 33–44 (2019) Pan, J.F., Li, Q., Wu, X., et al.: Complementary power generation of double linear switched reluctance generators for wave power exploitation. Int. J. Electr. Power Energy Syst. 106, 33–44 (2019)
70.
Zurück zum Zitat Blanco, M., Lafoz, M., Navarro, G.: Wave energy converter dimensioning constrained by location, power take-off and control strategy. In: 2012 IEEE International Symposium on Industrial Electronics 1462-1467 (2012) Blanco, M., Lafoz, M., Navarro, G.: Wave energy converter dimensioning constrained by location, power take-off and control strategy. In: 2012 IEEE International Symposium on Industrial Electronics 1462-1467 (2012)
71.
Zurück zum Zitat Pan, J.F., Li, S.Y., Cheng, E., et al.: Analysis of a direct drive 2-D planar generator for wave energy conversion. IEEE Trans. Magn. 53(11), 1–5 (2017) Pan, J.F., Li, S.Y., Cheng, E., et al.: Analysis of a direct drive 2-D planar generator for wave energy conversion. IEEE Trans. Magn. 53(11), 1–5 (2017)
72.
Zurück zum Zitat Pan, J.F., Zou, Y., Cheung, N., et al.: The direct-drive sensorless generation system for wave energy utilization. Int. J. Electr. Power Energy Syst. 62, 29–37 (2014) Pan, J.F., Zou, Y., Cheung, N., et al.: The direct-drive sensorless generation system for wave energy utilization. Int. J. Electr. Power Energy Syst. 62, 29–37 (2014)
73.
Zurück zum Zitat Sun, Z.G., Cheung, N.C., Zhao, S.W., et al.: Design and simulation of a linear switched reluctance generator for wave energy conversion. in: 2011 4th International Conference on Power Electronics Systems and Applications 1-5 (2011) Sun, Z.G., Cheung, N.C., Zhao, S.W., et al.: Design and simulation of a linear switched reluctance generator for wave energy conversion. in: 2011 4th International Conference on Power Electronics Systems and Applications 1-5 (2011)
74.
Zurück zum Zitat Pan, J., Zou, Y., Cao, G.: Investigation of a low-power, double-sided switched reluctance generator for wave energy conversion. IET Renew. Power Gener. 7(2), 98–109 (2013) Pan, J., Zou, Y., Cao, G.: Investigation of a low-power, double-sided switched reluctance generator for wave energy conversion. IET Renew. Power Gener. 7(2), 98–109 (2013)
75.
Zurück zum Zitat Di Dio, V., Franzitta, V., Milone, D., et al.: Design of bilateral switched reluctance linear generator to convert wave energy: Case study in Sicily. In: Advanced Materials Research (Vol. 860, pp. 1694-1698). Trans Tech Publications Ltd (2014) Di Dio, V., Franzitta, V., Milone, D., et al.: Design of bilateral switched reluctance linear generator to convert wave energy: Case study in Sicily. In: Advanced Materials Research (Vol. 860, pp. 1694-1698). Trans Tech Publications Ltd (2014)
76.
Zurück zum Zitat Hongwei, F.A.N.G., Yue, T.A.O., Zhang, S., et al.: Design and analysis of bidirectional driven float-type wave power generation system. J. Mod. Power Syst. Clean Energy 6(1), 50–60 (2018) Hongwei, F.A.N.G., Yue, T.A.O., Zhang, S., et al.: Design and analysis of bidirectional driven float-type wave power generation system. J. Mod. Power Syst. Clean Energy 6(1), 50–60 (2018)
77.
Zurück zum Zitat Li, W., Ching, T.W., Chau, K.T.: Design and analysis of a new parallel-hybrid-excited linear vernier machine for oceanic wave power generation. Appl. Energy 208, 878–888 (2017) Li, W., Ching, T.W., Chau, K.T.: Design and analysis of a new parallel-hybrid-excited linear vernier machine for oceanic wave power generation. Appl. Energy 208, 878–888 (2017)
78.
Zurück zum Zitat Toba, A., Lipo, T.A.: Generic torque-maximizing design methodology of surface permanent-magnet vernier machine. IEEE Trans. Ind. Appl. 36(6), 1539–1546 (2000) Toba, A., Lipo, T.A.: Generic torque-maximizing design methodology of surface permanent-magnet vernier machine. IEEE Trans. Ind. Appl. 36(6), 1539–1546 (2000)
79.
Zurück zum Zitat Brooking, P.R.M., Mueller, M.A.: Power conditioning of the output from a linear vernier hybrid permanent magnet generator for use in direct drive wave energy converters. IEE. P. Gener. Trans. D. 152(5), 673–681 (2005) Brooking, P.R.M., Mueller, M.A.: Power conditioning of the output from a linear vernier hybrid permanent magnet generator for use in direct drive wave energy converters. IEE. P. Gener. Trans. D. 152(5), 673–681 (2005)
80.
Zurück zum Zitat Du, Y., Cheng, M., Chau, K.T., et al.: Linear primary permanent magnet vernier machine for wave energy conversion. IET Electr. Power Appl. 9(3), 203–212 (2015) Du, Y., Cheng, M., Chau, K.T., et al.: Linear primary permanent magnet vernier machine for wave energy conversion. IET Electr. Power Appl. 9(3), 203–212 (2015)
81.
Zurück zum Zitat Du, Y., Chau, K.T., Cheng, M., et al.: Design and analysis of linear stator permanent magnet vernier machines. IEEE Trans. Magn. 47(10), 4219–4222 (2011) Du, Y., Chau, K.T., Cheng, M., et al.: Design and analysis of linear stator permanent magnet vernier machines. IEEE Trans. Magn. 47(10), 4219–4222 (2011)
82.
Zurück zum Zitat Vining, J., Mundon, T., Nair, B.: Electromechanical design and experimental evaluation of a double-sided, dual airgap linear vernier generator for wave energy conversion. in: 2017 IEEE Energy Conversion Congress and Exposition (ECCE) 5557-5564 (2017) Vining, J., Mundon, T., Nair, B.: Electromechanical design and experimental evaluation of a double-sided, dual airgap linear vernier generator for wave energy conversion. in: 2017 IEEE Energy Conversion Congress and Exposition (ECCE) 5557-5564 (2017)
83.
Zurück zum Zitat Raihan, M.A.H., Baker, N.J., Smith, K.J., et al.: Development and testing of a novel cylindrical permanent magnet linear generator. In: 2018 XIII International Conference on Electrical Machines (ICEM) 2137-2143 (2018) Raihan, M.A.H., Baker, N.J., Smith, K.J., et al.: Development and testing of a novel cylindrical permanent magnet linear generator. In: 2018 XIII International Conference on Electrical Machines (ICEM) 2137-2143 (2018)
84.
Zurück zum Zitat Baker, N.J., Raihan, M.A., Almoraya, A.A.: A cylindrical linear permanent magnet Vernier hybrid machine for wave energy. IEEE Trans. Energy Convers. 34(2), 691–700 (2018) Baker, N.J., Raihan, M.A., Almoraya, A.A.: A cylindrical linear permanent magnet Vernier hybrid machine for wave energy. IEEE Trans. Energy Convers. 34(2), 691–700 (2018)
85.
Zurück zum Zitat Liu, C., Yu, H., Hu, M., et al.: Research on a permanent magnet tubular linear generator for direct drive wave energy conversion. IET Renew. Power Gener. 8(3), 281–288 (2013) Liu, C., Yu, H., Hu, M., et al.: Research on a permanent magnet tubular linear generator for direct drive wave energy conversion. IET Renew. Power Gener. 8(3), 281–288 (2013)
86.
Zurück zum Zitat Liu, C., Yu, H., Hu, M., et al.: Detent force reduction in permanent magnet tubular linear generator for direct-driver wave energy conversion. IEEE Trans. Magn. 49(5), 1913–1916 (2013) Liu, C., Yu, H., Hu, M., et al.: Detent force reduction in permanent magnet tubular linear generator for direct-driver wave energy conversion. IEEE Trans. Magn. 49(5), 1913–1916 (2013)
87.
Zurück zum Zitat Danielsson, O., Leijon, M., Sjostedt, E.: Detailed study of the magnetic circuit in a longitudinal flux permanent-magnet synchronous linear generator. IEEE Trans. Magn. 41(9), 2490–2495 (2005) Danielsson, O., Leijon, M., Sjostedt, E.: Detailed study of the magnetic circuit in a longitudinal flux permanent-magnet synchronous linear generator. IEEE Trans. Magn. 41(9), 2490–2495 (2005)
88.
Zurück zum Zitat Bianchi, N., Bolognani, S., Cappello, A.D.F.: Reduction of cogging force in PM linear motors by pole-shifting. IEE. P. Elect. Power Appl. 152(3), 703–709 (2005) Bianchi, N., Bolognani, S., Cappello, A.D.F.: Reduction of cogging force in PM linear motors by pole-shifting. IEE. P. Elect. Power Appl. 152(3), 703–709 (2005)
89.
Zurück zum Zitat Baatar, N., Yoon, H.S., Pham, M.T., et al.: Shape optimal design of a 9-pole 10-slot PMLSM for detent force reduction using adaptive response surface method. IEEE Trans. Magn. 45(10), 4562–4565 (2009) Baatar, N., Yoon, H.S., Pham, M.T., et al.: Shape optimal design of a 9-pole 10-slot PMLSM for detent force reduction using adaptive response surface method. IEEE Trans. Magn. 45(10), 4562–4565 (2009)
90.
Zurück zum Zitat Lejerskog, E., Leijon, M.: Detailed study of closed stator slots for a direct-driven synchronous permanent magnet linear wave energy converter. Machines 2(1), 73–86 (2014) Lejerskog, E., Leijon, M.: Detailed study of closed stator slots for a direct-driven synchronous permanent magnet linear wave energy converter. Machines 2(1), 73–86 (2014)
91.
Zurück zum Zitat Zhang, J., Yu, H., Hu, M., et al.: Research on a PM slotless linear generator based on magnet field analysis model for wave energy conversion. IEEE Trans. Magn. 53(11), 1–4 (2017) Zhang, J., Yu, H., Hu, M., et al.: Research on a PM slotless linear generator based on magnet field analysis model for wave energy conversion. IEEE Trans. Magn. 53(11), 1–4 (2017)
92.
Zurück zum Zitat Xia, T., Yu, H., Guo, R., et al.: Research on the field-modulated tubular linear generator with quasi-halbach magnetization for ocean wave energy conversion. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018) Xia, T., Yu, H., Guo, R., et al.: Research on the field-modulated tubular linear generator with quasi-halbach magnetization for ocean wave energy conversion. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018)
93.
Zurück zum Zitat Wang, D., Shao, C., Wang, X.: Design and performance evaluation of a tubular linear switched reluctance generator with low cost and high thrust density. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016) Wang, D., Shao, C., Wang, X.: Design and performance evaluation of a tubular linear switched reluctance generator with low cost and high thrust density. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016)
94.
Zurück zum Zitat Zhang, J., Yu, H., Chen, Q., et al.: Design and experimental analysis of AC linear generator with Halbach PM arrays for direct-drive wave energy conversion. IEEE Trans. Appl. Supercond. 24(3), 1–4 (2013) Zhang, J., Yu, H., Chen, Q., et al.: Design and experimental analysis of AC linear generator with Halbach PM arrays for direct-drive wave energy conversion. IEEE Trans. Appl. Supercond. 24(3), 1–4 (2013)
95.
Zurück zum Zitat Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: Oceanic wave energy conversion by a novel permanent magnet linear generator capable of preventing demagnetization. IEEE Trans. Ind. Appl. 54(6), 6005–6014 (2018) Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: Oceanic wave energy conversion by a novel permanent magnet linear generator capable of preventing demagnetization. IEEE Trans. Ind. Appl. 54(6), 6005–6014 (2018)
96.
Zurück zum Zitat Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: A novel method to avoid degradation due to demagnetization of PM linear generators for oceanic wave energy extraction. in: 2017 20th International Conference on Electrical Machines and Systems (ICEMS) 1-6 (2017) Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: A novel method to avoid degradation due to demagnetization of PM linear generators for oceanic wave energy extraction. in: 2017 20th International Conference on Electrical Machines and Systems (ICEMS) 1-6 (2017)
97.
Zurück zum Zitat Xia, T., Yu, H., Chen, Z., et al.: Design and analysis of a field-modulated tubular linear permanent magnet generator for direct-drive wave energy conversion. IEEE Trans. Magn. 53(6), 1–4 (2017) Xia, T., Yu, H., Chen, Z., et al.: Design and analysis of a field-modulated tubular linear permanent magnet generator for direct-drive wave energy conversion. IEEE Trans. Magn. 53(6), 1–4 (2017)
98.
Zurück zum Zitat Du, J., Liang, D., Xu, L., et al.: Modeling of a linear switched reluctance machine and drive for wave energy conversion using matrix and tensor approach. IEEE Trans. Magn. 46(6), 1334–1337 (2010) Du, J., Liang, D., Xu, L., et al.: Modeling of a linear switched reluctance machine and drive for wave energy conversion using matrix and tensor approach. IEEE Trans. Magn. 46(6), 1334–1337 (2010)
99.
Zurück zum Zitat Liang, C., Zuo, L.: On the dynamics and design of a two-body wave energy converter. Renewable Energy 101, 265–274 (2017) Liang, C., Zuo, L.: On the dynamics and design of a two-body wave energy converter. Renewable Energy 101, 265–274 (2017)
100.
Zurück zum Zitat Kim, J., Koh, H.J., Cho, I.H., et al.: Experimental study of wave energy extraction by a dual-buoy heaving system. Int. J. Nav. Archit. Ocean Eng. 9(1), 25–34 (2017) Kim, J., Koh, H.J., Cho, I.H., et al.: Experimental study of wave energy extraction by a dual-buoy heaving system. Int. J. Nav. Archit. Ocean Eng. 9(1), 25–34 (2017)
101.
Zurück zum Zitat Al Shami, E., Wang, X., Zhang, R., et al.: A parameter study and optimization of two body wave energy converters. Renewable Energy 131, 1–13 (2019) Al Shami, E., Wang, X., Zhang, R., et al.: A parameter study and optimization of two body wave energy converters. Renewable Energy 131, 1–13 (2019)
102.
Zurück zum Zitat Chen, Z., Zhou, B., Zhang, L., et al.: Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system. Energy 165, 1008–1020 (2018) Chen, Z., Zhou, B., Zhang, L., et al.: Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system. Energy 165, 1008–1020 (2018)
103.
Zurück zum Zitat Ruellan, M., BenAhmed, H., Multon, B., et al.: Design methodology for a SEAREV wave energy converter. IEEE Trans. Energy Convers. 25(3), 760–767 (2010) Ruellan, M., BenAhmed, H., Multon, B., et al.: Design methodology for a SEAREV wave energy converter. IEEE Trans. Energy Convers. 25(3), 760–767 (2010)
104.
Zurück zum Zitat Bracco, G., Giorcelli, E., Mattiazzo, G.: ISWEC: a gyroscopic mechanism for wave power exploitation. Mech. Mach. Theory 46(10), 1411–1424 (2011)MATH Bracco, G., Giorcelli, E., Mattiazzo, G.: ISWEC: a gyroscopic mechanism for wave power exploitation. Mech. Mach. Theory 46(10), 1411–1424 (2011)MATH
105.
Zurück zum Zitat Battezzato, A., Bracco, G., Giorcelli, E., et al.: Performance assessment of a 2 DOF gyroscopic wave energy converter. Journal of Theoretical and Applied Mechanics 53(1), 195–207 (2015) Battezzato, A., Bracco, G., Giorcelli, E., et al.: Performance assessment of a 2 DOF gyroscopic wave energy converter. Journal of Theoretical and Applied Mechanics 53(1), 195–207 (2015)
106.
Zurück zum Zitat Boren, B.C., Lomonaco, P., Batten, B.A., et al.: Design, development, and testing of a scaled vertical axis pendulum wave energy converter. IEEE Trans. Sustain Energy 8(1), 155–163 (2016) Boren, B.C., Lomonaco, P., Batten, B.A., et al.: Design, development, and testing of a scaled vertical axis pendulum wave energy converter. IEEE Trans. Sustain Energy 8(1), 155–163 (2016)
107.
Zurück zum Zitat Yurchenko, D., Alevras, P.: Parametric pendulum based wave energy converter. Mech. Syst. Signal Process. 99, 504–515 (2018) Yurchenko, D., Alevras, P.: Parametric pendulum based wave energy converter. Mech. Syst. Signal Process. 99, 504–515 (2018)
108.
Zurück zum Zitat Crowley, S., Porter, R., Taunton, D.J., et al.: Modelling of the WITT wave energy converter. Renewable Energy 115, 159–174 (2018) Crowley, S., Porter, R., Taunton, D.J., et al.: Modelling of the WITT wave energy converter. Renewable Energy 115, 159–174 (2018)
109.
Zurück zum Zitat Guo, Q., Sun, M., Liu, H., et al.: Design and experiment of an electromagnetic ocean wave energy harvesting device. in: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 381-384 (2018) Guo, Q., Sun, M., Liu, H., et al.: Design and experiment of an electromagnetic ocean wave energy harvesting device. in: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 381-384 (2018)
110.
Zurück zum Zitat Coiro, D.P., Troise, G., Calise, G., et al.: Wave energy conversion through a point pivoted absorber: numerical and experimental tests on a scaled model. Renewable Energy 87, 317–325 (2016) Coiro, D.P., Troise, G., Calise, G., et al.: Wave energy conversion through a point pivoted absorber: numerical and experimental tests on a scaled model. Renewable Energy 87, 317–325 (2016)
111.
Zurück zum Zitat Porter, K., Ordonez-Sanchez, S., Johnstone, C., et al.: Integration of a direct drive contra-rotating generator with point absorber wave energy converters. in: 12th European Wave and Tidal Energy Conference (2017) Porter, K., Ordonez-Sanchez, S., Johnstone, C., et al.: Integration of a direct drive contra-rotating generator with point absorber wave energy converters. in: 12th European Wave and Tidal Energy Conference (2017)
112.
Zurück zum Zitat Lok, K.S., Stallard, T.J., Stansby, P.K., et al.: Optimisation of a clutch-rectified power take-off system for a heaving wave energy device in irregular waves with experimental comparison. International Journal of Marine Energy 8, 1–16 (2014) Lok, K.S., Stallard, T.J., Stansby, P.K., et al.: Optimisation of a clutch-rectified power take-off system for a heaving wave energy device in irregular waves with experimental comparison. International Journal of Marine Energy 8, 1–16 (2014)
113.
Zurück zum Zitat Dang, T.D., Phan, C.B., Ahn, K.K.: Design and investigation of a novel point absorber on performance optimization mechanism for wave energy converter in heave mode. International Journal of Precision Engineering and Manufacturing-Green Technology 6(3), 477–488 (2019) Dang, T.D., Phan, C.B., Ahn, K.K.: Design and investigation of a novel point absorber on performance optimization mechanism for wave energy converter in heave mode. International Journal of Precision Engineering and Manufacturing-Green Technology 6(3), 477–488 (2019)
114.
Zurück zum Zitat Liang, C., Ai, J., Zuo, L.: Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier. Ocean Eng. 136, 190–200 (2017) Liang, C., Ai, J., Zuo, L.: Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier. Ocean Eng. 136, 190–200 (2017)
115.
Zurück zum Zitat Chen, H.M., DelBalzo, D.R.: Linear sliding wave energy converter. in: OCEANS 2015-Genova 1-6(2015) Chen, H.M., DelBalzo, D.R.: Linear sliding wave energy converter. in: OCEANS 2015-Genova 1-6(2015)
116.
Zurück zum Zitat Binh, P.C., Tri, N.M., Dung, D.T., et al.: Analysis, design and experiment investigation of a novel wave energy converter. IET Gener. Transm. Distrib. 10(2), 460–469 (2016) Binh, P.C., Tri, N.M., Dung, D.T., et al.: Analysis, design and experiment investigation of a novel wave energy converter. IET Gener. Transm. Distrib. 10(2), 460–469 (2016)
117.
Zurück zum Zitat Binh, P.C.: A study on design and simulation of the point absorber wave energy converter using mechanical PTO. In: 2018 4th International Conference on Green Technology and Sustainable Development (GTSD) 122-125 (2018) Binh, P.C.: A study on design and simulation of the point absorber wave energy converter using mechanical PTO. In: 2018 4th International Conference on Green Technology and Sustainable Development (GTSD) 122-125 (2018)
118.
Zurück zum Zitat Martinez, C.P., SanJuan, J., Oliveros, I., et al.: Simulation of a slider-crank mechanism driven by a buoy for wave energy converters applications. In: 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America, 1-5 (2019) Martinez, C.P., SanJuan, J., Oliveros, I., et al.: Simulation of a slider-crank mechanism driven by a buoy for wave energy converters applications. In: 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America, 1-5 (2019)
119.
Zurück zum Zitat Sang, Y., Karayaka, H.B., Yan, Y., et al.: A rule-based phase control methodology for a slider-crank wave energy converter power take-off system. Int. J. Mar. Sci. 19, 124–144 (2017) Sang, Y., Karayaka, H.B., Yan, Y., et al.: A rule-based phase control methodology for a slider-crank wave energy converter power take-off system. Int. J. Mar. Sci. 19, 124–144 (2017)
120.
Zurück zum Zitat Yu, T., Shi, H., Song, W.: Rotational characteristics and capture efficiency of a variable guide vane wave energy converter. Renewable Energy 122, 275–290 (2018) Yu, T., Shi, H., Song, W.: Rotational characteristics and capture efficiency of a variable guide vane wave energy converter. Renewable Energy 122, 275–290 (2018)
121.
Zurück zum Zitat Joe, H., Roh, H., Cho, H., et al.: Development of a flap-type mooring-less wave energy harvesting system for sensor buoy. Energy 133, 851–863 (2017) Joe, H., Roh, H., Cho, H., et al.: Development of a flap-type mooring-less wave energy harvesting system for sensor buoy. Energy 133, 851–863 (2017)
122.
Zurück zum Zitat Chow, Y.C., Chang, Y.C., Chen, D.W., et al.: Parametric design methodology for maximizing energy capture of a bottom-hinged flap-type WEC with medium wave resources. Renewable Energy 126, 605–616 (2018) Chow, Y.C., Chang, Y.C., Chen, D.W., et al.: Parametric design methodology for maximizing energy capture of a bottom-hinged flap-type WEC with medium wave resources. Renewable Energy 126, 605–616 (2018)
123.
Zurück zum Zitat Chen, W., Gao, F., Meng, X.: Kinematics and dynamics of a novel 3-degree-of-freedom wave energy converter. Journal of Engineering for the Maritime Environment 233(3), 687–698 (2019) Chen, W., Gao, F., Meng, X.: Kinematics and dynamics of a novel 3-degree-of-freedom wave energy converter. Journal of Engineering for the Maritime Environment 233(3), 687–698 (2019)
124.
Zurück zum Zitat Barbarelli, S., Amelio, M., Castiglione, T., et al.: Analysis of the equilibrium conditions of a double rotor turbine prototype designed for the exploitation of the tidal currents. Energy Convers. Manag. 87, 1124–1133 (2014) Barbarelli, S., Amelio, M., Castiglione, T., et al.: Analysis of the equilibrium conditions of a double rotor turbine prototype designed for the exploitation of the tidal currents. Energy Convers. Manag. 87, 1124–1133 (2014)
125.
Zurück zum Zitat Wang, L., Kolios, A., Cui, L., et al.: Flexible multibody dynamics modelling of point-absorber wave energy converters. Renewable Energy 127, 790–801 (2018) Wang, L., Kolios, A., Cui, L., et al.: Flexible multibody dynamics modelling of point-absorber wave energy converters. Renewable Energy 127, 790–801 (2018)
126.
Zurück zum Zitat Yang, Y., Diaz, I., Morales, M.: A vertical-axis unidirectional rotor for wave energy conversion. Ocean Eng. 160, 224–230 (2018) Yang, Y., Diaz, I., Morales, M.: A vertical-axis unidirectional rotor for wave energy conversion. Ocean Eng. 160, 224–230 (2018)
127.
Zurück zum Zitat Farrok, O., Islam, M.R., Muttaqi, K.M., et al.: Design and optimization of a novel duport linear generator for oceanic wave energy conversion. IEEE Trans. Ind. Electron. 67(5), 3409–3418 (2020) Farrok, O., Islam, M.R., Muttaqi, K.M., et al.: Design and optimization of a novel duport linear generator for oceanic wave energy conversion. IEEE Trans. Ind. Electron. 67(5), 3409–3418 (2020)
128.
Zurück zum Zitat Chen, F., Duan, D., Han, Q., et al.: Study on force and wave energy conversion efficiency of buoys in low wave energy density seas. Energy Convers. Manage. 182, 191–200 (2019) Chen, F., Duan, D., Han, Q., et al.: Study on force and wave energy conversion efficiency of buoys in low wave energy density seas. Energy Convers. Manage. 182, 191–200 (2019)
129.
Zurück zum Zitat Shi, H., Han, Z., Zhao, C.: Numerical study on the optimization design of the conical bottom heaving buoy convertor. Ocean Eng. 173, 235–243 (2019) Shi, H., Han, Z., Zhao, C.: Numerical study on the optimization design of the conical bottom heaving buoy convertor. Ocean Eng. 173, 235–243 (2019)
130.
Zurück zum Zitat Sun, C., Luo, Z., Shang, J., et al.: Design and numerical analysis of a novel counter-rotating self-adaptable wave energy converter based on CFD technology. Energies 11(4), 694 (2018) Sun, C., Luo, Z., Shang, J., et al.: Design and numerical analysis of a novel counter-rotating self-adaptable wave energy converter based on CFD technology. Energies 11(4), 694 (2018)
131.
Zurück zum Zitat Al Shami, E., Zhang, R., Wang, X.: Point absorber wave energy harvesters: a review of recent developments. Energies 12(1), 47 (2019) Al Shami, E., Zhang, R., Wang, X.: Point absorber wave energy harvesters: a review of recent developments. Energies 12(1), 47 (2019)
132.
Zurück zum Zitat Liu, Z., Wang, X., Zhang, R., et al.: A dimensionless parameter analysis of a cylindrical tube electromagnetic vibration energy harvester and its oscillator nonlinearity effect. Energies 11(7), 1653 (2018) Liu, Z., Wang, X., Zhang, R., et al.: A dimensionless parameter analysis of a cylindrical tube electromagnetic vibration energy harvester and its oscillator nonlinearity effect. Energies 11(7), 1653 (2018)
133.
Zurück zum Zitat McNabb, L., Wang, L., McGrath, B.: Intrinsically stable realization of a resonant current regulator for a single phase inverter. in: 2017 11th Asian Control Conference (ASCC), 2256-2261 (2017) McNabb, L., Wang, L., McGrath, B.: Intrinsically stable realization of a resonant current regulator for a single phase inverter. in: 2017 11th Asian Control Conference (ASCC), 2256-2261 (2017)
Metadaten
Titel
Survey of the mechanisms of power take-off (PTO) devices of wave energy converters
verfasst von
Z. Liu
R. Zhang
H. Xiao
X. Wang
Publikationsdatum
03.06.2020
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2020
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-020-00958-z

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica Sinica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.