Skip to main content
Erschienen in: Cellulose 13/2020

07.07.2020 | Original Research

Swelling and dissolution kinetics of natural and man-made cellulose fibers in solvent power tuned ionic liquid

verfasst von: Feng Chen, Daisuke Sawada, Michael Hummel, Herbert Sixta, Tatiana Budtova

Erschienen in: Cellulose | Ausgabe 13/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The kinetics of the dissolution and swelling of different cellulose fibers in the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) was studied by varying solvent power and temperature. Natural fiber, flax, and man-made fibers, Cordenka and Lyocell-type (Ioncell) were used with one Ioncell fiber containing lignin and hemicelluloses. Through the addition of water, the solvent power was modified from very good (neat ionic liquid), to moderate (with 5 wt% water) and weak (15 wt% water). The temperature was varied to correlate the fiber dissolution rate with the solvent viscosity. All fibers were characterized by chemical composition, crystallinity, molecular weight distribution and dynamic vapor sorption. It was demonstrated that while the rate of fiber dissolution in neat ionic liquid depends on fiber accessibility and solvent viscosity, the water-induced decreased solvent power dominates the general fiber behavior. Flax appeared to be the most “sensitive” to the solvent power due to its hierarchical structure. The fastest dissolution or swelling was recorded for Ioncell and the slowest for Cordenka.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abu-Rous M, Varga K, Bechtold T, Schuster KC (2007) A new method to visualize and characterize the pore structure of TENCEL®(Lyocell) and other man‐made cellulosic fibres using a fluorescent dye molecular probe. J Appl Polym Sci 106:2083–2091CrossRef Abu-Rous M, Varga K, Bechtold T, Schuster KC (2007) A new method to visualize and characterize the pore structure of TENCEL®(Lyocell) and other man‐made cellulosic fibres using a fluorescent dye molecular probe. J Appl Polym Sci 106:2083–2091CrossRef
Zurück zum Zitat Andanson JM, Bordes E, Devémy J, Leroux F, Pádua AA, Gomes MF (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528–2538CrossRef Andanson JM, Bordes E, Devémy J, Leroux F, Pádua AA, Gomes MF (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528–2538CrossRef
Zurück zum Zitat Asaadi S, Hummel M, Ahvenainen P, Gubitosi M, Olsson U, Sixta H (2018) Structural analysis of Ioncell-F fibres from birch wood. Carbohydr Polym 181:893–901PubMedCrossRef Asaadi S, Hummel M, Ahvenainen P, Gubitosi M, Olsson U, Sixta H (2018) Structural analysis of Ioncell-F fibres from birch wood. Carbohydr Polym 181:893–901PubMedCrossRef
Zurück zum Zitat Baley C (2000) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A Appl Sci Manuf 33:939–948CrossRef Baley C (2000) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A Appl Sci Manuf 33:939–948CrossRef
Zurück zum Zitat Bolton AJ (1994) Natural fibers for plastic reinforcement. Mater Technol 9:12–20CrossRef Bolton AJ (1994) Natural fibers for plastic reinforcement. Mater Technol 9:12–20CrossRef
Zurück zum Zitat Brückner S (2000) Estimation of the background in powder diffraction patterns through a robust smoothing procedure. J Appl Crystallogr 33:977–979CrossRef Brückner S (2000) Estimation of the background in powder diffraction patterns through a robust smoothing procedure. J Appl Crystallogr 33:977–979CrossRef
Zurück zum Zitat Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–5CrossRef Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–5CrossRef
Zurück zum Zitat Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121CrossRef Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121CrossRef
Zurück zum Zitat Charlet K, Jernot JP, Eve S, Gomina M, Bréard J (2010) Multi-scale morphological characterisation of flax: from the stem to the fibrils. Carbohydr Polym 82:54–61CrossRef Charlet K, Jernot JP, Eve S, Gomina M, Bréard J (2010) Multi-scale morphological characterisation of flax: from the stem to the fibrils. Carbohydr Polym 82:54–61CrossRef
Zurück zum Zitat Chaudemanche C, Navard P (2011) Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers. Cellulose 18:1–5CrossRef Chaudemanche C, Navard P (2011) Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers. Cellulose 18:1–5CrossRef
Zurück zum Zitat Chen F, Kan Z, Hua S, Liu Z, Yang M (2015) A new understanding concerning the influence of structural changes on the thermal behavior of cellulose. J Polym Res 22:225CrossRef Chen F, Kan Z, Hua S, Liu Z, Yang M (2015) A new understanding concerning the influence of structural changes on the thermal behavior of cellulose. J Polym Res 22:225CrossRef
Zurück zum Zitat Chen F, Sawada D, Hummel M, Sixta H, Budtova T (2020) Unidirectional all-cellulose composites from flax via controlled impregnation with ionic liquid. Polymers 12:1010PubMedCentralCrossRef Chen F, Sawada D, Hummel M, Sixta H, Budtova T (2020) Unidirectional all-cellulose composites from flax via controlled impregnation with ionic liquid. Polymers 12:1010PubMedCentralCrossRef
Zurück zum Zitat Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part 1: free floating cotton and wood fibres in N-methylmorpholine‐N‐oxide–water mixtures. Macromol Symp 244:1–18CrossRef Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part 1: free floating cotton and wood fibres in N-methylmorpholine‐N‐oxide–water mixtures. Macromol Symp 244:1–18CrossRef
Zurück zum Zitat Cuissinat C, Navard P (2008) Swelling and dissolution of cellulose, part III: plant fibres in aqueous systems. Cellulose 15:67–74CrossRef Cuissinat C, Navard P (2008) Swelling and dissolution of cellulose, part III: plant fibres in aqueous systems. Cellulose 15:67–74CrossRef
Zurück zum Zitat Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef
Zurück zum Zitat Frost K, Kaminski D, Kirwan G et al (2009) Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydr Polym 78:543–548CrossRef Frost K, Kaminski D, Kirwan G et al (2009) Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydr Polym 78:543–548CrossRef
Zurück zum Zitat Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 12:3295–3297CrossRef Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 12:3295–3297CrossRef
Zurück zum Zitat Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194PubMedCrossRef Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194PubMedCrossRef
Zurück zum Zitat Gross AS, Chu JW (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341PubMedCrossRef Gross AS, Chu JW (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341PubMedCrossRef
Zurück zum Zitat Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, Damion RA, Budtova T, Ries ME (2012) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818PubMedCrossRef Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, Damion RA, Budtova T, Ries ME (2012) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818PubMedCrossRef
Zurück zum Zitat Hauru LK, Hummel M, King AW, Kilpelainen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905CrossRefPubMed Hauru LK, Hummel M, King AW, Kilpelainen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905CrossRefPubMed
Zurück zum Zitat Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP (2012) A critical review of all-cellulose composites. J Mater Sci 47(3):1171–1186CrossRef Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP (2012) A critical review of all-cellulose composites. J Mater Sci 47(3):1171–1186CrossRef
Zurück zum Zitat Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319CrossRef Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319CrossRef
Zurück zum Zitat Janson J (1970) Calculation of the polysaccharide composition of wood and pulp. Pap Puu Pap Tim 52:323–329 Janson J (1970) Calculation of the polysaccharide composition of wood and pulp. Pap Puu Pap Tim 52:323–329
Zurück zum Zitat Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393PubMedCrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393PubMedCrossRef
Zurück zum Zitat Korhonen O, Sawada D, Budtova T (2019) All-cellulose composites via short-fiber dispersion approach using NaOH–water solvent. Cellulose 26:4881–4893CrossRef Korhonen O, Sawada D, Budtova T (2019) All-cellulose composites via short-fiber dispersion approach using NaOH–water solvent. Cellulose 26:4881–4893CrossRef
Zurück zum Zitat Kreze T, Malej S (2003) Structural characteristics of new and conventional regenerated cellulosic fibers. Text Res J 73:675–684CrossRef Kreze T, Malej S (2003) Structural characteristics of new and conventional regenerated cellulosic fibers. Text Res J 73:675–684CrossRef
Zurück zum Zitat Le KA, Sescousse R, Budtova T (2012) Influence of water on cellulose-EMIMAc solution properties: a viscometric study. Cellulose 19:45–54CrossRef Le KA, Sescousse R, Budtova T (2012) Influence of water on cellulose-EMIMAc solution properties: a viscometric study. Cellulose 19:45–54CrossRef
Zurück zum Zitat Le Moigne N, Montes E, Pannetier C, Höfte H, Navard P (2008) Gradient in dissolution capacity of successively deposited cell wall layers in cotton fibres. Macromol Symp 262:65–71CrossRef Le Moigne N, Montes E, Pannetier C, Höfte H, Navard P (2008) Gradient in dissolution capacity of successively deposited cell wall layers in cotton fibres. Macromol Symp 262:65–71CrossRef
Zurück zum Zitat Le Moigne N, Jardeby K, Navard P (2010) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79:325–332CrossRef Le Moigne N, Jardeby K, Navard P (2010) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79:325–332CrossRef
Zurück zum Zitat Le Moigne N, Spinu M, Heinze T, Navard P (2010) Restricted dissolution and derivatization capacities of cellulose fibres under uniaxial elongational stress. Polymer 51:447–453CrossRef Le Moigne N, Spinu M, Heinze T, Navard P (2010) Restricted dissolution and derivatization capacities of cellulose fibres under uniaxial elongational stress. Polymer 51:447–453CrossRef
Zurück zum Zitat Ma Y, Asaadi S, Johansson LS, Ahvenainen P, Reza M, Alekhina M, Rautkari L, Michud A, Hauru L, Hummel M, Sixta H (2015) High-strength composite fibers from cellulose–lignin blends regenerated from ionic liquid solution. ChemSusChem 8:4030–4039PubMedCrossRef Ma Y, Asaadi S, Johansson LS, Ahvenainen P, Reza M, Alekhina M, Rautkari L, Michud A, Hauru L, Hummel M, Sixta H (2015) High-strength composite fibers from cellulose–lignin blends regenerated from ionic liquid solution. ChemSusChem 8:4030–4039PubMedCrossRef
Zurück zum Zitat Ma Y, Stubb J, Kontro I, Nieminen K, Hummel M, Sixta H (2018) Filament spinning of unbleached birch kraft pulps: effect of pulping intensity on the processability and the fiber properties. Carbohydr Polym 179:145–151PubMedCrossRef Ma Y, Stubb J, Kontro I, Nieminen K, Hummel M, Sixta H (2018) Filament spinning of unbleached birch kraft pulps: effect of pulping intensity on the processability and the fiber properties. Carbohydr Polym 179:145–151PubMedCrossRef
Zurück zum Zitat Mäkelä V, Wahlström R, Holopainen-Mantila U, Kilpeläinen I, King AW (2018) Clustered single cellulosic fiber dissolution kinetics and mechanisms through optical microscopy under limited dissolving conditions. Biomacromolecules 19:1635–1645PubMedCrossRef Mäkelä V, Wahlström R, Holopainen-Mantila U, Kilpeläinen I, King AW (2018) Clustered single cellulosic fiber dissolution kinetics and mechanisms through optical microscopy under limited dissolving conditions. Biomacromolecules 19:1635–1645PubMedCrossRef
Zurück zum Zitat McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18:2394–2401CrossRef McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18:2394–2401CrossRef
Zurück zum Zitat Minnick DL, Flores RA, DeStefano MR, Scurto AM (2016) Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects. J Phys Chem B 120:7906–7919PubMedCrossRef Minnick DL, Flores RA, DeStefano MR, Scurto AM (2016) Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects. J Phys Chem B 120:7906–7919PubMedCrossRef
Zurück zum Zitat Moryganov AP, Zavadskii AE, Stokozenko VG (2018) Special features of X-ray analysis of cellulose crystallinity and content in flax fibres. Fibre Chem 49:382–387CrossRef Moryganov AP, Zavadskii AE, Stokozenko VG (2018) Special features of X-ray analysis of cellulose crystallinity and content in flax fibres. Fibre Chem 49:382–387CrossRef
Zurück zum Zitat Okubayashi S, Griesser UJ, Bechtold T (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym 58(3):293–299CrossRef Okubayashi S, Griesser UJ, Bechtold T (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym 58(3):293–299CrossRef
Zurück zum Zitat Okubayashi S, Griesser UJ, Bechtold T (2005) Water accessibilities of man-made cellulosic fibers–effects of fiber characteristics. Cellulose 12:403–410CrossRef Okubayashi S, Griesser UJ, Bechtold T (2005) Water accessibilities of man-made cellulosic fibers–effects of fiber characteristics. Cellulose 12:403–410CrossRef
Zurück zum Zitat Olsson C, Idström A, Nordstierna L, Westman G (2014) Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate. Carbohydr Polym 99:438–446PubMedCrossRef Olsson C, Idström A, Nordstierna L, Westman G (2014) Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate. Carbohydr Polym 99:438–446PubMedCrossRef
Zurück zum Zitat Parviainen H, Parviainen A, Virtanen T, Kilpeläinen I, Ahvenainen P, Serimaa R, Grönqvist S, Maloney T, Maunu SL (2014) Dissolution enthalpies of cellulose in ionic liquids. Carbohydr Polym 113:67–76PubMedCrossRef Parviainen H, Parviainen A, Virtanen T, Kilpeläinen I, Ahvenainen P, Serimaa R, Grönqvist S, Maloney T, Maunu SL (2014) Dissolution enthalpies of cellulose in ionic liquids. Carbohydr Polym 113:67–76PubMedCrossRef
Zurück zum Zitat Peng H, Dai G, Wang S, Xu H (2017) The evolution behavior and dissolution mechanism of cellulose in aqueous solvent. J Mol Liq 241:959–966CrossRef Peng H, Dai G, Wang S, Xu H (2017) The evolution behavior and dissolution mechanism of cellulose in aqueous solvent. J Mol Liq 241:959–966CrossRef
Zurück zum Zitat Placet V, Trivaudey F, Cisse O, Gucheret-Retel V, Boubakar ML (2012) Diameter dependence of the apparent tensile modulus of hemp fibres: a morphological, structural or ultrastructural effect? Compos Part A Appl Sci Manuf 43:275–87CrossRef Placet V, Trivaudey F, Cisse O, Gucheret-Retel V, Boubakar ML (2012) Diameter dependence of the apparent tensile modulus of hemp fibres: a morphological, structural or ultrastructural effect? Compos Part A Appl Sci Manuf 43:275–87CrossRef
Zurück zum Zitat Powell RE, Roseveare WE, Eyring H (1941) Diffusion, thermal conductivity, and viscous flow of liquids. Ind Eng Chem 33:430–435CrossRef Powell RE, Roseveare WE, Eyring H (1941) Diffusion, thermal conductivity, and viscous flow of liquids. Ind Eng Chem 33:430–435CrossRef
Zurück zum Zitat Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedCrossRef Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedCrossRef
Zurück zum Zitat Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447CrossRef Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447CrossRef
Zurück zum Zitat Rous MA, Ingolic E, Schuster KC (2006) Visualisation of the fibrillar and pore morphology of cellulosic fibres applying transmission electron microscopy. Cellulose 13:411–419CrossRef Rous MA, Ingolic E, Schuster KC (2006) Visualisation of the fibrillar and pore morphology of cellulosic fibres applying transmission electron microscopy. Cellulose 13:411–419CrossRef
Zurück zum Zitat Rous MA, Varga K, Bechtold T, Schuster KC (2007) A new method to visualize and characterize the pore structure of TENCEL®(Lyocell) and other man-made cellulosic fibres using a fluorescent dye molecular probe. J Appl Polym Sci 106:2083–2091CrossRef Rous MA, Varga K, Bechtold T, Schuster KC (2007) A new method to visualize and characterize the pore structure of TENCEL®(Lyocell) and other man-made cellulosic fibres using a fluorescent dye molecular probe. J Appl Polym Sci 106:2083–2091CrossRef
Zurück zum Zitat Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRef Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRef
Zurück zum Zitat Shi Z, Yang Q, Cai J, Kuga S, Matsumoto Y (2014) Effects of lignin and hemicellulose contents on dissolution of wood pulp in aqueous NaOH/urea solution. Cellulose 21:1205–1215CrossRef Shi Z, Yang Q, Cai J, Kuga S, Matsumoto Y (2014) Effects of lignin and hemicellulose contents on dissolution of wood pulp in aqueous NaOH/urea solution. Cellulose 21:1205–1215CrossRef
Zurück zum Zitat Siroka B, Noisternig M, Griesser UJ, Bechtold T (2008) Characterization of cellulosic fibers and fabrics by sorption/desorption. Carbohydr Res 343:2194–2199PubMedCrossRef Siroka B, Noisternig M, Griesser UJ, Bechtold T (2008) Characterization of cellulosic fibers and fabrics by sorption/desorption. Carbohydr Res 343:2194–2199PubMedCrossRef
Zurück zum Zitat Sixta H, Michud A, Hauru L et al (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Paper Res J 30:43–57CrossRef Sixta H, Michud A, Hauru L et al (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Paper Res J 30:43–57CrossRef
Zurück zum Zitat Soykeabkaew N, Nishino T, Peijs T (2009) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos Part A Appl Sci Manuf 40:321–328CrossRef Soykeabkaew N, Nishino T, Peijs T (2009) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos Part A Appl Sci Manuf 40:321–328CrossRef
Zurück zum Zitat Spange S, Reuter A, Vilsmeier E, Heinze T, Keutel D, Linert WJ (1998) Determination of empirical polarity parameters of the cellulose solvent N,N-dimethylacetamide/LiCl by means of the solvatochromic technique. Polym Sci Part A Polym Chem 36:1945–1955CrossRef Spange S, Reuter A, Vilsmeier E, Heinze T, Keutel D, Linert WJ (1998) Determination of empirical polarity parameters of the cellulose solvent N,N-dimethylacetamide/LiCl by means of the solvatochromic technique. Polym Sci Part A Polym Chem 36:1945–1955CrossRef
Zurück zum Zitat Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975PubMedCrossRef Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975PubMedCrossRef
Zurück zum Zitat Takashi N, Ikuyo M, Koichi H (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRef Takashi N, Ikuyo M, Koichi H (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRef
Zurück zum Zitat Xie Y, Hill CA, Jalaludin Z, Curling SF, Anandjiwala RD, Norton AJ, Newman G (2011) The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model. J Mater Sci 46(2):479–489CrossRef Xie Y, Hill CA, Jalaludin Z, Curling SF, Anandjiwala RD, Norton AJ, Newman G (2011) The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model. J Mater Sci 46(2):479–489CrossRef
Zurück zum Zitat Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—a review. Compos Part B Eng 56:296–317CrossRef Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—a review. Compos Part B Eng 56:296–317CrossRef
Metadaten
Titel
Swelling and dissolution kinetics of natural and man-made cellulose fibers in solvent power tuned ionic liquid
verfasst von
Feng Chen
Daisuke Sawada
Michael Hummel
Herbert Sixta
Tatiana Budtova
Publikationsdatum
07.07.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 13/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03312-5

Weitere Artikel der Ausgabe 13/2020

Cellulose 13/2020 Zur Ausgabe