Skip to main content

2018 | OriginalPaper | Buchkapitel

Synthesis and Application of Silica Nanoparticles-Based Biohybrid Sorbents

verfasst von : Ritu Painuli, Sapna Raghav, Dinesh Kumar

Erschienen in: Bio- and Nanosorbents from Natural Resources

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Progress in the silicon oxide/polymer hybrid composite materials combines the unique attributes of the inorganic fillers and the organic polymers. Organic/inorganic nanocomposites are usually consulted as the organic polymer having a building block of the inorganic nanoscale. To recognize the interface interaction, nanoscale hybridization of organic polymers and Silica fillers, a new approach has been worked to synthesize hybrid materials in nanotechnology. Thus, this chapter explores the preparation Silica hybrid composite materials and their broad applications, such as functional coatings, biomedical applications, and so on.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zou, H., S. Wu, and J. Shen. 2008. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chemical Reviews 108: 3893–3957. doi:10.1021/cr068035q.CrossRef Zou, H., S. Wu, and J. Shen. 2008. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chemical Reviews 108: 3893–3957. doi:10.​1021/​cr068035q.CrossRef
2.
Zurück zum Zitat Lee, D.W., and B.R. Yoo. 2014. Polymer nanotechnology: Nanocomposites. Journal of Industrial and Engineering Chemistry 20: 3204–3947. Lee, D.W., and B.R. Yoo. 2014. Polymer nanotechnology: Nanocomposites. Journal of Industrial and Engineering Chemistry 20: 3204–3947.
3.
Zurück zum Zitat Ciriminna, R., A. Fidalgo, V. Pandarus, F. Beland, L.M. Ilharco, and M. Pagliaro. 2013. The sol-gel route to advanced silica-based materials and recent applications. Chemical Reviews 113: 6592–6620. doi:10.1021/cr300399c.CrossRef Ciriminna, R., A. Fidalgo, V. Pandarus, F. Beland, L.M. Ilharco, and M. Pagliaro. 2013. The sol-gel route to advanced silica-based materials and recent applications. Chemical Reviews 113: 6592–6620. doi:10.​1021/​cr300399c.CrossRef
4.
Zurück zum Zitat Bergna H.E., and W.O. Roberts. 2015. Colloidal silica: Fundamentals and applications. CRC Press. Bergna H.E., and W.O. Roberts. 2015. Colloidal silica: Fundamentals and applications. CRC Press.
5.
Zurück zum Zitat Iler, K. 1979. The chemistry of silica: Solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley. Iler, K. 1979. The chemistry of silica: Solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley.
6.
Zurück zum Zitat Lee, M.S., and M.J. Jo. 2002. Coating of methyltriethoxysilane—Modified colloidal silica on polymer substrates for abrasion resistance. Journal of Sol-Gel Science and Technology 24: 175–180. doi:10.1023/A:1015208328256.CrossRef Lee, M.S., and M.J. Jo. 2002. Coating of methyltriethoxysilane—Modified colloidal silica on polymer substrates for abrasion resistance. Journal of Sol-Gel Science and Technology 24: 175–180. doi:10.​1023/​A:​1015208328256.CrossRef
7.
Zurück zum Zitat Althues, H., J. Henle, and S. Kaskel. 2007. Functional inorganic nanofillers for transparent polymers. Chemical Society Reviews 36: 1454–1465. doi:10.1039/B608177K.CrossRef Althues, H., J. Henle, and S. Kaskel. 2007. Functional inorganic nanofillers for transparent polymers. Chemical Society Reviews 36: 1454–1465. doi:10.​1039/​B608177K.CrossRef
8.
Zurück zum Zitat Rambo, M.K.D., A.L. Cardoso, D.B. Bevilaqua, T.M. Rizzetti, L.A. Ramos, G.H. Korndorfer, and A.F. Martins. 2011. Silica from rice husk ash as an additive for rice plant. Journal of Agronomy 10: 99–104. doi:10.3923/ja.2011.99.104.CrossRef Rambo, M.K.D., A.L. Cardoso, D.B. Bevilaqua, T.M. Rizzetti, L.A. Ramos, G.H. Korndorfer, and A.F. Martins. 2011. Silica from rice husk ash as an additive for rice plant. Journal of Agronomy 10: 99–104. doi:10.​3923/​ja.​2011.​99.​104.CrossRef
9.
Zurück zum Zitat Shim, J., P. Velmurugan, and B.T. Oh. 2015. Extraction and physical characterization of amorphous silica made from corn cob ash at variable pH conditions via sol-gel processing. Journal of Industrial and Engineering Chemistry 30: 249–253. doi:10.1016/j.jiec.2015.05.029.CrossRef Shim, J., P. Velmurugan, and B.T. Oh. 2015. Extraction and physical characterization of amorphous silica made from corn cob ash at variable pH conditions via sol-gel processing. Journal of Industrial and Engineering Chemistry 30: 249–253. doi:10.​1016/​j.​jiec.​2015.​05.​029.CrossRef
10.
Zurück zum Zitat Velmurugan, P., J. Shim, K.J. Lee, S.S. Min Cho, S.K. Lim, K.M. Seo, K.S. Cho, B. Bang, and B.T. Oh. 2015. Extraction, characterization, and catalytic potential of amorphous silica from corn cobs by sol-gel method. Journal of Industrial and Engineering Chemistry 29: 298–303. doi:10.1016/j.jiec.2015.04.009.CrossRef Velmurugan, P., J. Shim, K.J. Lee, S.S. Min Cho, S.K. Lim, K.M. Seo, K.S. Cho, B. Bang, and B.T. Oh. 2015. Extraction, characterization, and catalytic potential of amorphous silica from corn cobs by sol-gel method. Journal of Industrial and Engineering Chemistry 29: 298–303. doi:10.​1016/​j.​jiec.​2015.​04.​009.CrossRef
11.
Zurück zum Zitat Kellar, J.J. 2006. Functional fillers and nanoscale minerals: New Markets/new Horisons. SME. Kellar, J.J. 2006. Functional fillers and nanoscale minerals: New Markets/new Horisons. SME.
12.
Zurück zum Zitat Trewyn, B.G., I.I. Slowing, S. Giri, H.T. Chen, and V.S.Y. Lin. 2007. Synthesis and functionalization of a mesoporous silica nanoparticle-based on the sol-gel process and applications in controlled release. Accounts of Chemical Research 40: 846–853. doi:10.1021/ar600032u.CrossRef Trewyn, B.G., I.I. Slowing, S. Giri, H.T. Chen, and V.S.Y. Lin. 2007. Synthesis and functionalization of a mesoporous silica nanoparticle-based on the sol-gel process and applications in controlled release. Accounts of Chemical Research 40: 846–853. doi:10.​1021/​ar600032u.CrossRef
14.
Zurück zum Zitat Belder, G.F., G.T. Brinke, and G. Hadziioannou. 1997. Influence of anchor block size on the thickness of adsorbed block copolymer layers. Langmuir 13: 4102–4105. doi:10.1021/la960379w.CrossRef Belder, G.F., G.T. Brinke, and G. Hadziioannou. 1997. Influence of anchor block size on the thickness of adsorbed block copolymer layers. Langmuir 13: 4102–4105. doi:10.​1021/​la960379w.CrossRef
15.
Zurück zum Zitat Li, S., M.M. Lin, M.S. Toprak, D.K. Kim, and M. Muhammed. 2014. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Reviews 1: 5214. doi:10.3402/nano.v1i0.5214.CrossRef Li, S., M.M. Lin, M.S. Toprak, D.K. Kim, and M. Muhammed. 2014. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Reviews 1: 5214. doi:10.​3402/​nano.​v1i0.​5214.CrossRef
17.
Zurück zum Zitat Guyard, A., J. Persello, J.P. Boisvert, and B. Cabane. 2006. Relationship between the polymer/silica interaction and properties of silica composite materials. Journal of Polymer Science Part B: Polymer Physics 44: 1134. doi:10.1002/polb.20768.CrossRef Guyard, A., J. Persello, J.P. Boisvert, and B. Cabane. 2006. Relationship between the polymer/silica interaction and properties of silica composite materials. Journal of Polymer Science Part B: Polymer Physics 44: 1134. doi:10.​1002/​polb.​20768.CrossRef
18.
Zurück zum Zitat Ahn, S.H., S.H. Kim, and S.G. Lee. 2004. Surface-modified silica nanoparticle–reinforced poly(ethylene 2,6-naphthalate). Journal of Applied Polymer Science 94: 812–818. doi:10.1002/app.21007.CrossRef Ahn, S.H., S.H. Kim, and S.G. Lee. 2004. Surface-modified silica nanoparticle–reinforced poly(ethylene 2,6-naphthalate). Journal of Applied Polymer Science 94: 812–818. doi:10.​1002/​app.​21007.CrossRef
19.
Zurück zum Zitat Mahdavian, A.R., M. Ashjari, and A.B. Makoo. 2007. Preparation of poly (styrene–methyl methacrylate)/SiO2 composite nanoparticles via emulsion polymerization. An investigation into the compatibilization. European Polymer Journal 43: 336–344. doi:10.1016/j.eurpolymj.2006.10.004.CrossRef Mahdavian, A.R., M. Ashjari, and A.B. Makoo. 2007. Preparation of poly (styrene–methyl methacrylate)/SiO2 composite nanoparticles via emulsion polymerization. An investigation into the compatibilization. European Polymer Journal 43: 336–344. doi:10.​1016/​j.​eurpolymj.​2006.​10.​004.CrossRef
20.
Zurück zum Zitat Tang, J.C., G.L. Lin, H.C. Yang, G.J. Jiang, and Y.W. Chen-Yang. 2007. Polyimide-silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica. Journal of Applied Polymer Science 104: 4096–4105. doi:10.1002/app.26041.CrossRef Tang, J.C., G.L. Lin, H.C. Yang, G.J. Jiang, and Y.W. Chen-Yang. 2007. Polyimide-silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica. Journal of Applied Polymer Science 104: 4096–4105. doi:10.​1002/​app.​26041.CrossRef
21.
Zurück zum Zitat Ding, X.F., Z.C. Wang, D.X. Han, Y.J. Zhang, Y.F. Shen, Z.J. Wang, and L. Niu. 2006. An effective approach to the synthesis of poly(methyl methacrylate)/silica nanocomposites. Nanotechnology 17: 4796–4801. doi:10.1088/0957-4484/17/19/002.CrossRef Ding, X.F., Z.C. Wang, D.X. Han, Y.J. Zhang, Y.F. Shen, Z.J. Wang, and L. Niu. 2006. An effective approach to the synthesis of poly(methyl methacrylate)/silica nanocomposites. Nanotechnology 17: 4796–4801. doi:10.​1088/​0957-4484/​17/​19/​002.CrossRef
22.
Zurück zum Zitat Wu, T.M., and M.S. Chu. 2005. Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. Journal of Applied Polymer Science 98: 2058–2063. doi:10.1002/app.22406.CrossRef Wu, T.M., and M.S. Chu. 2005. Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. Journal of Applied Polymer Science 98: 2058–2063. doi:10.​1002/​app.​22406.CrossRef
24.
Zurück zum Zitat Perro, A., S. Reculusa, E. Bourgeat-Lami, E. Duguet, and S. Ravaine. 2006. Synthesis of hybrid colloidal particles: From snowman-like to raspberry-like morphologies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 284: 78–83. doi:10.1016/j.colsurfa.2005.11.073.CrossRef Perro, A., S. Reculusa, E. Bourgeat-Lami, E. Duguet, and S. Ravaine. 2006. Synthesis of hybrid colloidal particles: From snowman-like to raspberry-like morphologies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 284: 78–83. doi:10.​1016/​j.​colsurfa.​2005.​11.​073.CrossRef
25.
Zurück zum Zitat Lin, J., J.A. Siddiqui, and R.M. Ottenbrite. 2001. Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polymers for Advanced Technologies 12: 285–292. doi:10.1002/pat.64.CrossRef Lin, J., J.A. Siddiqui, and R.M. Ottenbrite. 2001. Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polymers for Advanced Technologies 12: 285–292. doi:10.​1002/​pat.​64.CrossRef
26.
Zurück zum Zitat Kango, S., S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar. 2013. Surface modification of inorganic nanoparticles for the development of organic–inorganic nanocomposites: A review. Progress in Polymer Science 38: 1232–1261. doi:10.1016/j.progpolymsci.2013.02.003.CrossRef Kango, S., S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar. 2013. Surface modification of inorganic nanoparticles for the development of organic–inorganic nanocomposites: A review. Progress in Polymer Science 38: 1232–1261. doi:10.​1016/​j.​progpolymsci.​2013.​02.​003.CrossRef
28.
Zurück zum Zitat Yoo, B.R., D.E. Jung, and J.S. Han. 2009. Materials Research Society Symposium Proceedings, 1174-V06-08. Yoo, B.R., D.E. Jung, and J.S. Han. 2009. Materials Research Society Symposium Proceedings, 1174-V06-08.
30.
Zurück zum Zitat Zheng, K., L. Chen, Y. Li, and P. Cui. 2004. Preparation and thermal properties of silica-graft acrylonitrile-butadiene-styrene nanocomposites. Polymer Engineering & Science 44: 1077–1082. doi:10.1002/pen.20100.CrossRef Zheng, K., L. Chen, Y. Li, and P. Cui. 2004. Preparation and thermal properties of silica-graft acrylonitrile-butadiene-styrene nanocomposites. Polymer Engineering & Science 44: 1077–1082. doi:10.​1002/​pen.​20100.CrossRef
31.
Zurück zum Zitat Li, Chunzhao, and B.C. Benicewicz. 2005. Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition–fragmentation chain transfer polymerization. Macromolecules 38: 5929–5936. doi:10.1021/ma050216r.CrossRef Li, Chunzhao, and B.C. Benicewicz. 2005. Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition–fragmentation chain transfer polymerization. Macromolecules 38: 5929–5936. doi:10.​1021/​ma050216r.CrossRef
32.
Zurück zum Zitat Liu, G., M. Cai, F. Zhou, and W. Liu. 2014. Charged polymer brushes-grafted hollow silica nanoparticles as a novel promising material for simultaneous joint lubrication and treatment. The Journal of Physical Chemistry B 118: 4920–4931. doi:10.1021/jp500074g.CrossRef Liu, G., M. Cai, F. Zhou, and W. Liu. 2014. Charged polymer brushes-grafted hollow silica nanoparticles as a novel promising material for simultaneous joint lubrication and treatment. The Journal of Physical Chemistry B 118: 4920–4931. doi:10.​1021/​jp500074g.CrossRef
33.
Zurück zum Zitat Zhang, M.Q., M.Z. Rong, and K. Friedrich. 2003. In Handbook of organic-inorganic hybrid materials and nanocomposites, vol. 2, ed. H.S. Nalwa, 113. Stevenson Ranch, CA: American Scientific Publishers. Zhang, M.Q., M.Z. Rong, and K. Friedrich. 2003. In Handbook of organic-inorganic hybrid materials and nanocomposites, vol. 2, ed. H.S. Nalwa, 113. Stevenson Ranch, CA: American Scientific Publishers.
35.
Zurück zum Zitat Perez, L.D., B.L. Lopez. 2012 Thermal characterization of SBR/NBR blends reinforced with a mesoporous silica. Journal of Applied Polymer Science, E328–E333. doi:10.1002/app.35689. Perez, L.D., B.L. Lopez. 2012 Thermal characterization of SBR/NBR blends reinforced with a mesoporous silica. Journal of Applied Polymer Science, E328–E333. doi:10.​1002/​app.​35689.
36.
Zurück zum Zitat Suzuki, N., S. Kiba, Y. Kamachi, N. Miyamoto, and Y. Yamauchi. 2011. Mesoporous silica as smart inorganic filler: Preparation of robust silicone rubber with low thermal expansion property. Journal of Materials Chemistry 21: 5338–5344. doi:10.1039/C0JM03767B.CrossRef Suzuki, N., S. Kiba, Y. Kamachi, N. Miyamoto, and Y. Yamauchi. 2011. Mesoporous silica as smart inorganic filler: Preparation of robust silicone rubber with low thermal expansion property. Journal of Materials Chemistry 21: 5338–5344. doi:10.​1039/​C0JM03767B.CrossRef
37.
Zurück zum Zitat Suzuki, N., S. Kiba, and Y. Yamauchi. 2011. Bimodal filler system consisting of mesoporous silica particles and silica nanoparticles toward efficient suppression of thermal expansion in silica/epoxy composites. Journal of Materials Chemistry 2: 14941–14947. doi:10.1039/C1JM12405F.CrossRef Suzuki, N., S. Kiba, and Y. Yamauchi. 2011. Bimodal filler system consisting of mesoporous silica particles and silica nanoparticles toward efficient suppression of thermal expansion in silica/epoxy composites. Journal of Materials Chemistry 2: 14941–14947. doi:10.​1039/​C1JM12405F.CrossRef
38.
Zurück zum Zitat Suzuki, N., S. Kiba, and Y. Yamauchi. 2011. Low dielectric property of novel mesoporous silica/polymer composites using smart molecular caps: Theoretical calculation of air space encapsulated inside mesopores. Microporous and Mesoporous Materials 138: 123–131. doi:10.1016/j.micromeso.2010.09.020.CrossRef Suzuki, N., S. Kiba, and Y. Yamauchi. 2011. Low dielectric property of novel mesoporous silica/polymer composites using smart molecular caps: Theoretical calculation of air space encapsulated inside mesopores. Microporous and Mesoporous Materials 138: 123–131. doi:10.​1016/​j.​micromeso.​2010.​09.​020.CrossRef
39.
40.
Zurück zum Zitat Mittal, V. 2015. Synthesis techniques for polymer nanocomposites. Wiley. Mittal, V. 2015. Synthesis techniques for polymer nanocomposites. Wiley.
41.
Zurück zum Zitat Ou, C.F., and M.C. Hsu. 2007. Preparation and characterization of cyclo olefin copolymer (COC)/silica nanoparticle composites by solution blending. Journal of Polymer Research 14: 373–378. doi:10.1007/s10965-007-9119-5.CrossRef Ou, C.F., and M.C. Hsu. 2007. Preparation and characterization of cyclo olefin copolymer (COC)/silica nanoparticle composites by solution blending. Journal of Polymer Research 14: 373–378. doi:10.​1007/​s10965-007-9119-5.CrossRef
43.
44.
45.
Zurück zum Zitat Yabu, H., H. Satoh, M. Kanahara, Y. Saito, and M. Shimomura. 2014. Spontaneous formation of silica–polymer composite particles by simple co-precipitation process. Japanese Journal of Applied Physics 53: 05FT02. Yabu, H., H. Satoh, M. Kanahara, Y. Saito, and M. Shimomura. 2014. Spontaneous formation of silica–polymer composite particles by simple co-precipitation process. Japanese Journal of Applied Physics 53: 05FT02.
46.
47.
49.
Zurück zum Zitat Fukushima, H., M. Kohri, T. Kojima, T. Taniguchi, K. Saito, and T. Nakahira. 2012. Surface-initiated enzymatic vinyl polymerization: Synthesis of polymer-grafted silica particles using horseradish peroxidase as catalyst. Polym. Chem 3: 1123–1125. doi:10.1039/c2py20036h.CrossRef Fukushima, H., M. Kohri, T. Kojima, T. Taniguchi, K. Saito, and T. Nakahira. 2012. Surface-initiated enzymatic vinyl polymerization: Synthesis of polymer-grafted silica particles using horseradish peroxidase as catalyst. Polym. Chem 3: 1123–1125. doi:10.​1039/​c2py20036h.CrossRef
50.
Zurück zum Zitat Fu, H.P., R.Y. Hong, Y.J. Zhang, H.Z. Li, B. Xu, Y. Zheng, and D.G. Wei. 2009. Preparation and properties investigation of PMMA/silica composites derived from silicic acid. Polymers for Advanced Technologies 20: 84–91. doi:10.1002/pat.1226.CrossRef Fu, H.P., R.Y. Hong, Y.J. Zhang, H.Z. Li, B. Xu, Y. Zheng, and D.G. Wei. 2009. Preparation and properties investigation of PMMA/silica composites derived from silicic acid. Polymers for Advanced Technologies 20: 84–91. doi:10.​1002/​pat.​1226.CrossRef
51.
Zurück zum Zitat Pourjavadi, A., Z.M. Tehrani, and S. Joka. 2015. Functionalized mesoporous silica-coated magnetic graphene oxide by polyglycerol-g-polycaprolactone with pH-responsive behavior: Designed for targeted and controlled doxorubicin delivery. Journal of Industrial and Engineering Chemistry 28: 45–53. doi:10.1016/j.jiec.2015.01.021.CrossRef Pourjavadi, A., Z.M. Tehrani, and S. Joka. 2015. Functionalized mesoporous silica-coated magnetic graphene oxide by polyglycerol-g-polycaprolactone with pH-responsive behavior: Designed for targeted and controlled doxorubicin delivery. Journal of Industrial and Engineering Chemistry 28: 45–53. doi:10.​1016/​j.​jiec.​2015.​01.​021.CrossRef
52.
Zurück zum Zitat Salernitano, E., and C. Migliaresi. 2003. Composite materials for biomedical applications: A review. Journal of Applied Biomaterials & Biomechanics 1: 3–18. Salernitano, E., and C. Migliaresi. 2003. Composite materials for biomedical applications: A review. Journal of Applied Biomaterials & Biomechanics 1: 3–18.
53.
Zurück zum Zitat Steven, J.P., M.Y. Irani, K. Williams, and N.H. Voelcker. 2012. Controlled drug delivery from composites of nanostructured porous silicon and poly (L-lactide). Nanomedicine 7: 995. doi:10.2217/nnm.11.176.CrossRef Steven, J.P., M.Y. Irani, K. Williams, and N.H. Voelcker. 2012. Controlled drug delivery from composites of nanostructured porous silicon and poly (L-lactide). Nanomedicine 7: 995. doi:10.​2217/​nnm.​11.​176.CrossRef
54.
Zurück zum Zitat Payentko, V., A. Matkovsky, and Y. Matrunchik. 2015. Composites of silica with immobilized cholinesterase incorporated into polymeric shell. Nanoscale Research Letters 10: 82. doi:10.1186/s11671-015-0808-4.CrossRef Payentko, V., A. Matkovsky, and Y. Matrunchik. 2015. Composites of silica with immobilized cholinesterase incorporated into polymeric shell. Nanoscale Research Letters 10: 82. doi:10.​1186/​s11671-015-0808-4.CrossRef
55.
Zurück zum Zitat Rho, W.Y., H.M. Kim, S. Kyeong, Y.L. Kang, D.H. Kim, H. Kang, C. Jeong, D.E. Kim, Y.S. Lee, and B.H. Jun. 2014. Facile synthesis of monodispersed silica-coated magnetic nanoparticles. Journal of Industrial and Engineering Chemistry 20: 2646–2649. doi:10.1016/j.jiec.2013.12.014.CrossRef Rho, W.Y., H.M. Kim, S. Kyeong, Y.L. Kang, D.H. Kim, H. Kang, C. Jeong, D.E. Kim, Y.S. Lee, and B.H. Jun. 2014. Facile synthesis of monodispersed silica-coated magnetic nanoparticles. Journal of Industrial and Engineering Chemistry 20: 2646–2649. doi:10.​1016/​j.​jiec.​2013.​12.​014.CrossRef
56.
Zurück zum Zitat Wu, H., Y. Zhao, X. Mu, H. Wu, L. Chen, W. Liu, Y. Mu, J. Liu, and X. Wei. 2015. A silica-polymer composite nanosystem for tumor-targeted imaging and p53 gene therapy of lung cancer. Journal of Biomaterials Science, Polymer Edition 26: 384–400. doi:10.1080/09205063.2015.1012035.CrossRef Wu, H., Y. Zhao, X. Mu, H. Wu, L. Chen, W. Liu, Y. Mu, J. Liu, and X. Wei. 2015. A silica-polymer composite nanosystem for tumor-targeted imaging and p53 gene therapy of lung cancer. Journal of Biomaterials Science, Polymer Edition 26: 384–400. doi:10.​1080/​09205063.​2015.​1012035.CrossRef
58.
Zurück zum Zitat Liu, H., J. Xu, B. Guo, and X. He. 2014. Preparation and performance of silica/polypropylene composite separator for lithium ion batteries. Journal Materials Science 49: 6961. doi:10.1007/s10853-014-8401-2.CrossRef Liu, H., J. Xu, B. Guo, and X. He. 2014. Preparation and performance of silica/polypropylene composite separator for lithium ion batteries. Journal Materials Science 49: 6961. doi:10.​1007/​s10853-014-8401-2.CrossRef
59.
Zurück zum Zitat Raveh, M., L. Liu, and D. Mandler. 2013. Electrochemical co-deposition of conductive polymer-silica hybrid thin films. Physical Chemistry Chemical Physics 15: 10876. doi:10.1039/c3cp50457c.CrossRef Raveh, M., L. Liu, and D. Mandler. 2013. Electrochemical co-deposition of conductive polymer-silica hybrid thin films. Physical Chemistry Chemical Physics 15: 10876. doi:10.​1039/​c3cp50457c.CrossRef
60.
Zurück zum Zitat Kashiwagi, K., A.B. Morgan, J.M. Antonucci, M.R. VanLandingham, R.H. Harris, W.H. Awad, and J.R. Shields. 2003. Thermal and flammability properties of a silica–poly (methylmethacrylate) nanocomposite. Journal of Applied Polymer Science 89: 2072–2078. doi:10.1002/app.12307.CrossRef Kashiwagi, K., A.B. Morgan, J.M. Antonucci, M.R. VanLandingham, R.H. Harris, W.H. Awad, and J.R. Shields. 2003. Thermal and flammability properties of a silica–poly (methylmethacrylate) nanocomposite. Journal of Applied Polymer Science 89: 2072–2078. doi:10.​1002/​app.​12307.CrossRef
61.
Zurück zum Zitat Chen, C., Y. Tang, Y.S. Ye, Z. Xue, Y. Xue, X. Xie, and Y.W. Mai. 2014. High-performance epoxy/silica coated silver nanowire composites as under fill material for electronic packaging. Composites Science and Technology 105: 80–85. doi:10.1016/j.compscitech.2014.10.002.CrossRef Chen, C., Y. Tang, Y.S. Ye, Z. Xue, Y. Xue, X. Xie, and Y.W. Mai. 2014. High-performance epoxy/silica coated silver nanowire composites as under fill material for electronic packaging. Composites Science and Technology 105: 80–85. doi:10.​1016/​j.​compscitech.​2014.​10.​002.CrossRef
62.
63.
Zurück zum Zitat Yeh, J.M., and K.C. Chang. 2014. Nanofillers a surface coating—A review. Journal of Industrial and Engineering Chemistry 20: 275–291. Yeh, J.M., and K.C. Chang. 2014. Nanofillers a surface coating—A review. Journal of Industrial and Engineering Chemistry 20: 275–291.
64.
Zurück zum Zitat Golestaneh, M., G. Amini, G.D. Najafpour, and M.A. Beygi. 2010. Evaluation of mechanical strength of epoxy polymer concrete with silica powder as filler. World Applied Sciences Journal 9: 216. Golestaneh, M., G. Amini, G.D. Najafpour, and M.A. Beygi. 2010. Evaluation of mechanical strength of epoxy polymer concrete with silica powder as filler. World Applied Sciences Journal 9: 216.
65.
Zurück zum Zitat Yin, P., M. Xu, W. Liu, R. Qu, X. Liu, and Q. Xu. 2014. High efficient adsorption of gold ions onto the novel functional composite silica microspheres encapsulated by organophosphonated polystyrene. Journal of Industrial and Engineering Chemistry 20: 379–390. doi:10.1016/j.jiec.2013.04.032.CrossRef Yin, P., M. Xu, W. Liu, R. Qu, X. Liu, and Q. Xu. 2014. High efficient adsorption of gold ions onto the novel functional composite silica microspheres encapsulated by organophosphonated polystyrene. Journal of Industrial and Engineering Chemistry 20: 379–390. doi:10.​1016/​j.​jiec.​2013.​04.​032.CrossRef
66.
Zurück zum Zitat Qu, R., X. Ma, M. Wang, C. Sun, X. Sun, S. Sun, Y. Zhang, and P. Yin. 2014. Homogeneous preparation of polyamidoamine grafted silica gels and their adsorption properties as Au3+ adsorbents. Journal of Industrial and Engineering Chemistry 20: 4382–4392. doi:10.1016/j.jiec.2014.02.005.CrossRef Qu, R., X. Ma, M. Wang, C. Sun, X. Sun, S. Sun, Y. Zhang, and P. Yin. 2014. Homogeneous preparation of polyamidoamine grafted silica gels and their adsorption properties as Au3+ adsorbents. Journal of Industrial and Engineering Chemistry 20: 4382–4392. doi:10.​1016/​j.​jiec.​2014.​02.​005.CrossRef
67.
Zurück zum Zitat Tang, J., J. Sun, J. Xu, and W. Li. 2014. Grafting of poly[styrene-co-N-(4-vinylbenzyl)-N, N-diethylamine] polymer film onto the surface of silica microspheres and their application as an effective sorbent for lead ions. Journal of Applied Polymer Science 131: 39973. doi:10.1002/app.39973. Tang, J., J. Sun, J. Xu, and W. Li. 2014. Grafting of poly[styrene-co-N-(4-vinylbenzyl)-N, N-diethylamine] polymer film onto the surface of silica microspheres and their application as an effective sorbent for lead ions. Journal of Applied Polymer Science 131: 39973. doi:10.​1002/​app.​39973.
68.
Zurück zum Zitat Taha, A.A., Y.N. Wu, H. Wang, and F. Li. 2012. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. Journal of Environmental Management 112: 10–16. doi:10.1016/j.jenvman.2012.05.031.CrossRef Taha, A.A., Y.N. Wu, H. Wang, and F. Li. 2012. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. Journal of Environmental Management 112: 10–16. doi:10.​1016/​j.​jenvman.​2012.​05.​031.CrossRef
69.
Zurück zum Zitat Mishra, A.K., T. Kuila, D.Y. Kim, N.H. Kim, and J.H. Lee. 2012. Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for proton exchange membrane fuel cells. Journal of Materials Chemistry 22: 24366–24372. doi:10.1039/C2JM33288D.CrossRef Mishra, A.K., T. Kuila, D.Y. Kim, N.H. Kim, and J.H. Lee. 2012. Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for proton exchange membrane fuel cells. Journal of Materials Chemistry 22: 24366–24372. doi:10.​1039/​C2JM33288D.CrossRef
70.
Zurück zum Zitat Guzmán, C., A. Alvarez, O.E. Herrera, R. Nava, J.L. Garcia, L.A. Godínez, L.G. Arriaga, and W. Mérida. 2011. Water transport in composite membranes containing silica: temperature and relative humidity effects. International Journal of Electrochemical Science 6: 4648–4666. doi:10.1039/C2JM33288D. Guzmán, C., A. Alvarez, O.E. Herrera, R. Nava, J.L. Garcia, L.A. Godínez, L.G. Arriaga, and W. Mérida. 2011. Water transport in composite membranes containing silica: temperature and relative humidity effects. International Journal of Electrochemical Science 6: 4648–4666. doi:10.​1039/​C2JM33288D.
71.
72.
Zurück zum Zitat Wang, H., A.B. Holmberg, L. Huang, Z. Wang, A. Mitra, J.M. Norbeck, and Y. Yan. 2002. Nafion-bifunctional silica composite proton conductive membrane. Journal of Materials Chemistry 12: 834–837. doi:10.1039/B107498A.CrossRef Wang, H., A.B. Holmberg, L. Huang, Z. Wang, A. Mitra, J.M. Norbeck, and Y. Yan. 2002. Nafion-bifunctional silica composite proton conductive membrane. Journal of Materials Chemistry 12: 834–837. doi:10.​1039/​B107498A.CrossRef
73.
Zurück zum Zitat Liu, H., C. Gong, J. Wang, X. Liu, H. Liu, F. Cheng, G. Wang, G. Zheng, C. Qin, and S. Wen. 2016. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydrate Polymers 136: 1379–1385. doi:10.1016/j.carbpol.2015.09.085.CrossRef Liu, H., C. Gong, J. Wang, X. Liu, H. Liu, F. Cheng, G. Wang, G. Zheng, C. Qin, and S. Wen. 2016. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydrate Polymers 136: 1379–1385. doi:10.​1016/​j.​carbpol.​2015.​09.​085.CrossRef
75.
Zurück zum Zitat Jang, J.H., C.K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E.L. Thomas. 2007. 3D micro- and nanostructures via interference lithography. Advanced Functional Materials 17: 3027. doi:10.1002/adfm.200700140.CrossRef Jang, J.H., C.K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E.L. Thomas. 2007. 3D micro- and nanostructures via interference lithography. Advanced Functional Materials 17: 3027. doi:10.​1002/​adfm.​200700140.CrossRef
76.
Zurück zum Zitat Cho, J.-D., H.-T. Ju, Y.-S. Park, and J.-W. Hong. 2006. Kinetics of cationic photopolymerizations of UV-curable epoxy-based SU8-Negative photoresists with and without silica nanoparticles. Macromolecular Materials and Engineering 291: 1155–1163. doi:10.1002/mame.200600124.CrossRef Cho, J.-D., H.-T. Ju, Y.-S. Park, and J.-W. Hong. 2006. Kinetics of cationic photopolymerizations of UV-curable epoxy-based SU8-Negative photoresists with and without silica nanoparticles. Macromolecular Materials and Engineering 291: 1155–1163. doi:10.​1002/​mame.​200600124.CrossRef
78.
Zurück zum Zitat Liu, Y.L., C.Y. Hsu, Y.H. Su, and J.Y. Lai. 2005. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions. Biomacromolecules 6: 368–373. doi:10.1021/bm049531w.CrossRef Liu, Y.L., C.Y. Hsu, Y.H. Su, and J.Y. Lai. 2005. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions. Biomacromolecules 6: 368–373. doi:10.​1021/​bm049531w.CrossRef
79.
Zurück zum Zitat Khayet, M., J.P.G. Villaluenga, J.L. Valentin, M.A. López-Manchado, J.I. Mengual, and B. Seoane. 2005. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: Characterization and application in pervaporation. Polymer 46: 9881. doi:10.1016/j.polymer.2005.07.081.CrossRef Khayet, M., J.P.G. Villaluenga, J.L. Valentin, M.A. López-Manchado, J.I. Mengual, and B. Seoane. 2005. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: Characterization and application in pervaporation. Polymer 46: 9881. doi:10.​1016/​j.​polymer.​2005.​07.​081.CrossRef
81.
Zurück zum Zitat Nguyen, S.T., J. Feng, S.K. Ng, J.P.W. Wong, V.B.C. Tan, and H.M. Duong. 2014. Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 445: 128. doi:10.1016/j.colsurfa.2014.01.015.CrossRef Nguyen, S.T., J. Feng, S.K. Ng, J.P.W. Wong, V.B.C. Tan, and H.M. Duong. 2014. Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 445: 128. doi:10.​1016/​j.​colsurfa.​2014.​01.​015.CrossRef
82.
Zurück zum Zitat Battaglin, G., E. Cattaruzza, F. Gonella, R. Polloni, B.F. Scremin, G. Mattei, P. Mazzoldi, and C. Sada. 2004. Structural and optical properties of Cu: Silica nanocomposite films prepared by co-sputtering deposition. Applied Surface Science 226: 52–56. doi:10.1016/j.apsusc.2003.11.030.CrossRef Battaglin, G., E. Cattaruzza, F. Gonella, R. Polloni, B.F. Scremin, G. Mattei, P. Mazzoldi, and C. Sada. 2004. Structural and optical properties of Cu: Silica nanocomposite films prepared by co-sputtering deposition. Applied Surface Science 226: 52–56. doi:10.​1016/​j.​apsusc.​2003.​11.​030.CrossRef
83.
Zurück zum Zitat Chang, C.C., and W.C. Chen. 2002. Synthesis and optical properties of polyimide-silica hybrid thin films. Chemistry of Materials 14: 4242–4248. doi:10.1021/cm0202310.CrossRef Chang, C.C., and W.C. Chen. 2002. Synthesis and optical properties of polyimide-silica hybrid thin films. Chemistry of Materials 14: 4242–4248. doi:10.​1021/​cm0202310.CrossRef
84.
Zurück zum Zitat Yu, Y.Y., and W.C. Chen. 2003. Transparent organic–inorganic hybrid thin films prepared from acrylic polymer and aqueous monodispersed colloidal silica. Materials Chemistry and Physics 82: 388–395. doi:10.1016/S0254-0584(03),00259-1.CrossRef Yu, Y.Y., and W.C. Chen. 2003. Transparent organic–inorganic hybrid thin films prepared from acrylic polymer and aqueous monodispersed colloidal silica. Materials Chemistry and Physics 82: 388–395. doi:10.​1016/​S0254-0584(03),00259-1.CrossRef
85.
Zurück zum Zitat Jang, J., J. Ha, and B. Lim. 2006. Synthesis and characterization of monodisperse silica–polyaniline core–shell nanoparticles. Chemical Communications 1622–1624. Jang, J., J. Ha, and B. Lim. 2006. Synthesis and characterization of monodisperse silica–polyaniline core–shell nanoparticles. Chemical Communications 1622–1624.
87.
88.
Zurück zum Zitat Rangelova, N., N. Georgieva, K. Mileva, R. Yuryev, and R. Muller. 2012. Synthesis and antibacterial activity of SiO2-CMC-Ag hybrid materials prepared by sol-gel. Comptes Rendus de l’Academie Bulgare des Sciences 65: 1057–1064. doi:10.1080/13102818.2014.944789. Rangelova, N., N. Georgieva, K. Mileva, R. Yuryev, and R. Muller. 2012. Synthesis and antibacterial activity of SiO2-CMC-Ag hybrid materials prepared by sol-gel. Comptes Rendus de l’Academie Bulgare des Sciences 65: 1057–1064. doi:10.​1080/​13102818.​2014.​944789.
89.
Zurück zum Zitat Argyo, C., V. Cauda, H. Engelke, J. Radler, G. Bein, and T. Bein. 2012. Heparin-coated colloidal mesoporous silica nanoparticles efficiently bind to antithrombin as an anticoagulant drug-delivery system. Chemistry-A European Journal 18: 428–432. doi:10.1002/chem.201102926.CrossRef Argyo, C., V. Cauda, H. Engelke, J. Radler, G. Bein, and T. Bein. 2012. Heparin-coated colloidal mesoporous silica nanoparticles efficiently bind to antithrombin as an anticoagulant drug-delivery system. Chemistry-A European Journal 18: 428–432. doi:10.​1002/​chem.​201102926.CrossRef
90.
Zurück zum Zitat Joanna, L., S. Magdalena, S. Michal, K. Mariusz, R. Marek, T. Waldemar, S. Agnieszka, K. Gabriela, and N. Maria. 2014. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic CS and coated with silica shell. Journal of Alloys and Compounds 586: 45–51. doi:10.1016/j.jallcom.2013.10.039.CrossRef Joanna, L., S. Magdalena, S. Michal, K. Mariusz, R. Marek, T. Waldemar, S. Agnieszka, K. Gabriela, and N. Maria. 2014. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic CS and coated with silica shell. Journal of Alloys and Compounds 586: 45–51. doi:10.​1016/​j.​jallcom.​2013.​10.​039.CrossRef
91.
93.
Zurück zum Zitat Bauer, F., H.J. Gläsel, U. Decker, H. Ernst, A. Freyer, E. Hartmann, V. Sauerland, and R. Mehnert. 2003. Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance. Progress in Organic Coatings 47: 147. doi:10.1016/S0300-9440(03)00117-6.CrossRef Bauer, F., H.J. Gläsel, U. Decker, H. Ernst, A. Freyer, E. Hartmann, V. Sauerland, and R. Mehnert. 2003. Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance. Progress in Organic Coatings 47: 147. doi:10.​1016/​S0300-9440(03)00117-6.CrossRef
94.
Zurück zum Zitat Tiarks, F., K. Landfester, and M. Antoinette. 2001. Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17: 908–918. doi:10.1021/la001276n.CrossRef Tiarks, F., K. Landfester, and M. Antoinette. 2001. Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17: 908–918. doi:10.​1021/​la001276n.CrossRef
96.
97.
Zurück zum Zitat Zhang, L.M., G.H. Wang, and Z. Xing. 2011. Polysaccharide-assisted incorporation of multiwalled into sol–gel for electrochemical sensing. Journal of Materials Chemistry 21: 4650–4656. doi:10.1039/C0JM03031G.CrossRef Zhang, L.M., G.H. Wang, and Z. Xing. 2011. Polysaccharide-assisted incorporation of multiwalled into sol–gel for electrochemical sensing. Journal of Materials Chemistry 21: 4650–4656. doi:10.​1039/​C0JM03031G.CrossRef
98.
Zurück zum Zitat Lei, L., Z. Cao, Q. Xie, Y. Fu, Y. Tan, M. Ma, and S. Yao. 2011. One-pot electrodeposition of 3-aminopropyltriethoxysilane–CS hybrid gel film to immobilize glucose oxidase for biosensing. Sensors and Actuators, B: Chemical 157: 282–289. doi:10.1016/j.snb.2011.03.063.CrossRef Lei, L., Z. Cao, Q. Xie, Y. Fu, Y. Tan, M. Ma, and S. Yao. 2011. One-pot electrodeposition of 3-aminopropyltriethoxysilane–CS hybrid gel film to immobilize glucose oxidase for biosensing. Sensors and Actuators, B: Chemical 157: 282–289. doi:10.​1016/​j.​snb.​2011.​03.​063.CrossRef
99.
Zurück zum Zitat Lee, H.U.K., Y.S. Song, Y.J. Suh, C. Park, and S.W. Kim. 2012. Synthesis and characterization of glucose oxidase–core/shell magnetic nanoparticle complexes into CS bead. Journal of Molecular Catalysis B: Enzymatic 81: 31–36. doi:10.1016/j.molcatb.2012.05.004.CrossRef Lee, H.U.K., Y.S. Song, Y.J. Suh, C. Park, and S.W. Kim. 2012. Synthesis and characterization of glucose oxidase–core/shell magnetic nanoparticle complexes into CS bead. Journal of Molecular Catalysis B: Enzymatic 81: 31–36. doi:10.​1016/​j.​molcatb.​2012.​05.​004.CrossRef
100.
Zurück zum Zitat Liu, F., L.D. Carlos, R.A.S. Ferreira, J. Rocha, M.C. Ferro, A. Tourrette, F. Quignard, and M. Robitzer. 2010. Synthesis, texture, and photoluminescence of lanthanide-containing CS-silica hybrids. Journal of Physical Chemistry 114: 77–83. doi:10.1021/jp908563d.CrossRef Liu, F., L.D. Carlos, R.A.S. Ferreira, J. Rocha, M.C. Ferro, A. Tourrette, F. Quignard, and M. Robitzer. 2010. Synthesis, texture, and photoluminescence of lanthanide-containing CS-silica hybrids. Journal of Physical Chemistry 114: 77–83. doi:10.​1021/​jp908563d.CrossRef
101.
Zurück zum Zitat Singh, V., and S. Ahmed. 2012. Synthesis and characterization of carboxymethyl cellulose-silver nanoparticle (AgNP)-silica hybrid for amylase immobilization. Cellulose 19: 1759–1769. doi:10.1007/s10570-012-9749-6.CrossRef Singh, V., and S. Ahmed. 2012. Synthesis and characterization of carboxymethyl cellulose-silver nanoparticle (AgNP)-silica hybrid for amylase immobilization. Cellulose 19: 1759–1769. doi:10.​1007/​s10570-012-9749-6.CrossRef
102.
103.
Zurück zum Zitat Singh, V., and S. Ahmad. 2014. Carboxymethyl cellulose-gelatin-silica nanohybrid: An efficient carrier matrix for alpha amylase. International Journal of Biological Macromolecules 67: 439–445. doi:10.1007/s10570-012-9749-6.CrossRef Singh, V., and S. Ahmad. 2014. Carboxymethyl cellulose-gelatin-silica nanohybrid: An efficient carrier matrix for alpha amylase. International Journal of Biological Macromolecules 67: 439–445. doi:10.​1007/​s10570-012-9749-6.CrossRef
105.
Zurück zum Zitat Su, Y.H., Y.L. Liu, Y.M. Sun, J.Y. Lai, M.D. Guiver, and Y. Gao. 2006. Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: A significant improvement on cell performance. Journal of Power Sources 155: 111. doi:10.1016/j.jpowsour.2005.03.233.CrossRef Su, Y.H., Y.L. Liu, Y.M. Sun, J.Y. Lai, M.D. Guiver, and Y. Gao. 2006. Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: A significant improvement on cell performance. Journal of Power Sources 155: 111. doi:10.​1016/​j.​jpowsour.​2005.​03.​233.CrossRef
106.
Zurück zum Zitat Saxena, A., B.P. Tripathi, and V.K. Shahi. 2007. Sulfonated Poly (styrene-co-maleic anhydride)–poly(ethylene glycol)–silica nanocomposite polyelectrolyte membranes for fuel cell applications. The Journal of Physical Chemistry B 111: 2454–12461. doi:10.1021/jp072244c.CrossRef Saxena, A., B.P. Tripathi, and V.K. Shahi. 2007. Sulfonated Poly (styrene-co-maleic anhydride)–poly(ethylene glycol)–silica nanocomposite polyelectrolyte membranes for fuel cell applications. The Journal of Physical Chemistry B 111: 2454–12461. doi:10.​1021/​jp072244c.CrossRef
107.
Zurück zum Zitat Khayet, M., J.P.G. Villaluenga, J.L. Valentin, M.A. López-Manchado, J.I. Mengual, and B. Seoane. 2005. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: Characterization and application in pervaporation. Polymer 46: 9881. doi:10.1016/j.polymer.2005.07.081.CrossRef Khayet, M., J.P.G. Villaluenga, J.L. Valentin, M.A. López-Manchado, J.I. Mengual, and B. Seoane. 2005. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: Characterization and application in pervaporation. Polymer 46: 9881. doi:10.​1016/​j.​polymer.​2005.​07.​081.CrossRef
108.
109.
Zurück zum Zitat Obradović, V., D.B. Stojanović, R. Jančić-Heinemann, I. Živković, V. Radojević, P.S. Uskoković, and R. Aleksić. 2014. Ballistic properties of hybrid thermoplastic composites with silica nanoparticles. Journal of Engineered Fibers and Fabrics 9: 97–107. Obradović, V., D.B. Stojanović, R. Jančić-Heinemann, I. Živković, V. Radojević, P.S. Uskoković, and R. Aleksić. 2014. Ballistic properties of hybrid thermoplastic composites with silica nanoparticles. Journal of Engineered Fibers and Fabrics 9: 97–107.
111.
Zurück zum Zitat Bhowmick, A.K., and H. Stephens. 2000. Handbook of elastomers. 2nd ed, 610. CRC Press. Bhowmick, A.K., and H. Stephens. 2000. Handbook of elastomers. 2nd ed, 610. CRC Press.
112.
Zurück zum Zitat Qu, R., X. Ma, M. Wang, C. Sun, X. Sun, S. Sun, Y. Zhang, and P. Yin. 2014. Homogeneous preparation of polyamidoamine grafted silica gels and their adsorption properties as Au3+ adsorbents. Journal of Industrial and Engineering Chemistry 20: 4382–4392. doi:10.1016/j.jiec.2014.02.005.CrossRef Qu, R., X. Ma, M. Wang, C. Sun, X. Sun, S. Sun, Y. Zhang, and P. Yin. 2014. Homogeneous preparation of polyamidoamine grafted silica gels and their adsorption properties as Au3+ adsorbents. Journal of Industrial and Engineering Chemistry 20: 4382–4392. doi:10.​1016/​j.​jiec.​2014.​02.​005.CrossRef
113.
Zurück zum Zitat Tang, J., J. Sun, J. Xu, and W. Li. 2014. Grafting of poly[styrene-co-N-(4-vinylbenzyl)-N, N-diethylamine] polymer film onto the surface of silica microspheres and their application as an effective sorbent for lead ions. Journal of Applied Polymer Science 131: 39973. doi:10.1002/app.39973. Tang, J., J. Sun, J. Xu, and W. Li. 2014. Grafting of poly[styrene-co-N-(4-vinylbenzyl)-N, N-diethylamine] polymer film onto the surface of silica microspheres and their application as an effective sorbent for lead ions. Journal of Applied Polymer Science 131: 39973. doi:10.​1002/​app.​39973.
114.
Zurück zum Zitat Rezaei, F., R.P. Lively, Y. Labreche, G. Chen, Y. Fan, W.J. Koros, and C.W. Jones. 2013. Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO2 capture from flue gas. ACS Applied Materials & Interfaces 5: 3921. doi:10.1021/am400636c.CrossRef Rezaei, F., R.P. Lively, Y. Labreche, G. Chen, Y. Fan, W.J. Koros, and C.W. Jones. 2013. Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO2 capture from flue gas. ACS Applied Materials & Interfaces 5: 3921. doi:10.​1021/​am400636c.CrossRef
115.
Zurück zum Zitat Su, S., B. Chen, M. He, and B. Hu. 2014. Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta 123: 1–9. doi:10.1016/j.talanta.2014.01.061.CrossRef Su, S., B. Chen, M. He, and B. Hu. 2014. Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta 123: 1–9. doi:10.​1016/​j.​talanta.​2014.​01.​061.CrossRef
116.
Zurück zum Zitat Taha, A.A., Y.N. Wu, H. Wang, and F. Li. 2012. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr (VI) ion removal from aqueous solution. Journal of Environmental Management 112: 10–16. doi:10.1016/j.jenvman.2012.05.031.CrossRef Taha, A.A., Y.N. Wu, H. Wang, and F. Li. 2012. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr (VI) ion removal from aqueous solution. Journal of Environmental Management 112: 10–16. doi:10.​1016/​j.​jenvman.​2012.​05.​031.CrossRef
117.
Zurück zum Zitat Chang, C.C., K.C. Wang, C.C. Chen, and L.P. Cheng. 2014. Preparation and characterization of silica/polymer antifogging coatings. Polymers & Polymer Composites 22: 39–44. Chang, C.C., K.C. Wang, C.C. Chen, and L.P. Cheng. 2014. Preparation and characterization of silica/polymer antifogging coatings. Polymers & Polymer Composites 22: 39–44.
118.
Zurück zum Zitat Yoshinaga, K., Y. Yang, T. Ohno, S. Motokucho, and K. Kojio. 2014. Inclusion of fullerene in polymer chains grafted on silica nanoparticles in an organic solvent. Polymer Journal 46: 623–627. doi:10.1038/pj.2014.24.CrossRef Yoshinaga, K., Y. Yang, T. Ohno, S. Motokucho, and K. Kojio. 2014. Inclusion of fullerene in polymer chains grafted on silica nanoparticles in an organic solvent. Polymer Journal 46: 623–627. doi:10.​1038/​pj.​2014.​24.CrossRef
119.
Zurück zum Zitat Payentko, V., A. Matkovsky, and Y. Matrunchik. 2015. Composites of silica with immobilized cholinesterase incorporated into polymeric shell Nanoscale Res. Letters 10: 82. doi:10.1186/s11671-015-0808-4. Payentko, V., A. Matkovsky, and Y. Matrunchik. 2015. Composites of silica with immobilized cholinesterase incorporated into polymeric shell Nanoscale Res. Letters 10: 82. doi:10.​1186/​s11671-015-0808-4.
120.
Zurück zum Zitat Wu, H., Y. Zhao, X. Mu, H. Wu, L. Chen, W. Liu, Y. Mu, J. Liu, and X. Wei. 2015. A silica-polymer composite nano system for tumor-targeted imaging and p53 gene therapy of lung cancer. Journal of Biomaterials Science, Polymer Edition 26: 384–400. doi:10.1080/09205063.2015.1012035.CrossRef Wu, H., Y. Zhao, X. Mu, H. Wu, L. Chen, W. Liu, Y. Mu, J. Liu, and X. Wei. 2015. A silica-polymer composite nano system for tumor-targeted imaging and p53 gene therapy of lung cancer. Journal of Biomaterials Science, Polymer Edition 26: 384–400. doi:10.​1080/​09205063.​2015.​1012035.CrossRef
121.
Zurück zum Zitat Samart, C., P. Prawingwong, S. Amnuaypanich, H. Zhang, K. Kajiyoshi, and P. Reubroycharoen. 2014. Preparation of poly acrylic acid grafted mesoporous silica as pH responsive releasing material. Journal of Industrial and Engineering Chemistry 20: 2153–2158. doi:10.1016/j.jiec.2013.09.045.CrossRef Samart, C., P. Prawingwong, S. Amnuaypanich, H. Zhang, K. Kajiyoshi, and P. Reubroycharoen. 2014. Preparation of poly acrylic acid grafted mesoporous silica as pH responsive releasing material. Journal of Industrial and Engineering Chemistry 20: 2153–2158. doi:10.​1016/​j.​jiec.​2013.​09.​045.CrossRef
122.
Zurück zum Zitat McInnes, Steven J.P., Y. Irani, K.A. Williams, and N.H. Voelcker. 2012. Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). Nanomedicine 7: 995–1016. doi:10.2217/nnm.11.176.CrossRef McInnes, Steven J.P., Y. Irani, K.A. Williams, and N.H. Voelcker. 2012. Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). Nanomedicine 7: 995–1016. doi:10.​2217/​nnm.​11.​176.CrossRef
123.
Zurück zum Zitat Gonon, P., A. Sylvestre, J. Teysseyre, and C. Prior. 2001. Dielectric properties of epoxy/silica composites used for microlectronic packaging, and their dependence on post-curing. Journal Materials Science 12: 81. doi:10.1023/A:1011241818209. Gonon, P., A. Sylvestre, J. Teysseyre, and C. Prior. 2001. Dielectric properties of epoxy/silica composites used for microlectronic packaging, and their dependence on post-curing. Journal Materials Science 12: 81. doi:10.​1023/​A:​1011241818209.
Metadaten
Titel
Synthesis and Application of Silica Nanoparticles-Based Biohybrid Sorbents
verfasst von
Ritu Painuli
Sapna Raghav
Dinesh Kumar
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68708-7_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.