Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2021

10.08.2020 | Original Article

Technical feasibility of reforming anaerobic digestion and landfill biogas streams into bio-hydrogen

verfasst von: Isam Janajreh, Idowu Adeyemi, Sherien Elagroudy

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen can be produced through different pathways, i.e., natural gas reforming, gasification of coal, and electrolysis of water. A more sustainable pathway is through bio-H2, which can be produced by bio-photolysis of water and photo-fermentation and dark fermentation of organic matters (OM). However, these routes are still limited by their specific energy requirement, process slowness, and microorganism sensitivity. These limitations can be mitigated by producing bio-H2 via steam reforming of biogas sources such as landfill or anaerobic digester. In this study, the influence of the methane concentration in the biogas stream on reforming metrics was investigated. Two levels of modeling were pursued here: equilibrium and high fidelity numerical simulations. The former considers several reaction constants, elemental mass conservation, and energy balance. The latter model is based on the reactive Navier-Stokes of non-isothermal and multiple species flow in a cylindrical reactor. Process metrics such as species concentrations and conversion percentages as well as thermal process efficiencies were delineated and evaluated. Results showed that methane concentration has a pronounced influence on the resulting hydrogen concentration and the overall reforming efficiency. The anaerobic CH4 source resulted in a mole fraction of near 0.3 for H2 and a reforming efficiency of 36%. These values are much lower than those evaluated for natural gas (mole fraction of 0.5 for H2 and reforming efficiency of 75%). Although this work illustrates the technical feasibility of biogas reforming, it highlights the low attained process efficiency that can be improved to achieve sustainable bio-H2 production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass wastes via dark fermentation: a review. Waste Biomass Valoriz 1:21–39 Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass wastes via dark fermentation: a review. Waste Biomass Valoriz 1:21–39
2.
Zurück zum Zitat Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PN, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95 Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PN, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95
3.
Zurück zum Zitat Karuppiah T, Azariah VE (2019) Biomass pretreatment for enhancement of biogas production. In Anaerobic Digestion. IntechOpen Karuppiah T, Azariah VE (2019) Biomass pretreatment for enhancement of biogas production. In Anaerobic Digestion. IntechOpen
4.
Zurück zum Zitat Pontoni L, Panico A, Salzano E, Frunzo L, Iodice P, Pirozzi F (2015) Innovative parameters to control the efficiency of anaerobic digestion process. Chem Eng Trans 43:2089–2094 Pontoni L, Panico A, Salzano E, Frunzo L, Iodice P, Pirozzi F (2015) Innovative parameters to control the efficiency of anaerobic digestion process. Chem Eng Trans 43:2089–2094
6.
Zurück zum Zitat Moller HB, Sommer SG, Ahring BK (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26:485–496 Moller HB, Sommer SG, Ahring BK (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26:485–496
7.
Zurück zum Zitat Amon T, Kryvoruchko V, Amon B, Moitzi G, Lyson D, Hackl E, Jeremic D, Zollitsch W, Pötsch E, Mayer K, Plank J (2002) ethanbildungsvermo¨gen von Mais – Einfluss der Sorte, der Konservierung und des Erntezeitpunktes. Final Report 47. October 2002. On behalf of Pioneer Saaten Ges.m.b.H. Parndorf (Austria). http://www.nas.boku.ac.at/4536.html Amon T, Kryvoruchko V, Amon B, Moitzi G, Lyson D, Hackl E, Jeremic D, Zollitsch W, Pötsch E, Mayer K, Plank J (2002) ethanbildungsvermo¨gen von Mais – Einfluss der Sorte, der Konservierung und des Erntezeitpunktes. Final Report 47. October 2002. On behalf of Pioneer Saaten Ges.m.b.H. Parndorf (Austria). http://​www.​nas.​boku.​ac.​at/​4536.​html
8.
Zurück zum Zitat Amon T, Kryvoruchko V, Amon B, Moitzi G, Lyson D, Hackl E, Jeremic D, Zollitsch W, Pötsch E (2003) Optimierung der Biogaserzeugung aus den Energiepflanzen Mais und Kleegras. Final Report 77. July 2003. Bundesministeriums fu¨ r Land- und Forstwirtschaft, Umwelt- und Wasserwirtschaft (Ed.). Research Project No. 1249. http://www.nas.boku.ac.at/4536.html Amon T, Kryvoruchko V, Amon B, Moitzi G, Lyson D, Hackl E, Jeremic D, Zollitsch W, Pötsch E (2003) Optimierung der Biogaserzeugung aus den Energiepflanzen Mais und Kleegras. Final Report 77. July 2003. Bundesministeriums fu¨ r Land- und Forstwirtschaft, Umwelt- und Wasserwirtschaft (Ed.). Research Project No. 1249. http://​www.​nas.​boku.​ac.​at/​4536.​html
9.
Zurück zum Zitat Amon T, Kryvoruchko V, Amon B, Buga S, Amin A, Zollitsch W, Mayer K, Pötsch E (2004) Biogaserträge aus landwirtschaftlichen Gärgütern. In: BAL Gumpenstein, BMLFUW (Ed.) BAL-Bericht über das 10. Alpenländische Expertenforum zum Thema Biogasproduktion— Alternative Biomassenutzung und Energiegewinnung in der Landwirtschaft am 18–19 März 2004. ISBN 3-901980-72-5, pp. 21– 26. http://www.nas.boku.ac.at/4536.html Amon T, Kryvoruchko V, Amon B, Buga S, Amin A, Zollitsch W, Mayer K, Pötsch E (2004) Biogaserträge aus landwirtschaftlichen Gärgütern. In: BAL Gumpenstein, BMLFUW (Ed.) BAL-Bericht über das 10. Alpenländische Expertenforum zum Thema Biogasproduktion— Alternative Biomassenutzung und Energiegewinnung in der Landwirtschaft am 18–19 März 2004. ISBN 3-901980-72-5, pp. 21– 26. http://​www.​nas.​boku.​ac.​at/​4536.​html
10.
Zurück zum Zitat Balsari P, Bonfanti P, Bozza E, Sangiorgi F, 14–20 August 1983. Evaluation of the influence of animal feeding on the performances of a biogas installation (mathematical model). In: Third International Symposium on Anaerobic Digestion. Boston, MA, USA, A 20, p. 7. Balsari P, Bonfanti P, Bozza E, Sangiorgi F, 14–20 August 1983. Evaluation of the influence of animal feeding on the performances of a biogas installation (mathematical model). In: Third International Symposium on Anaerobic Digestion. Boston, MA, USA, A 20, p. 7.
11.
Zurück zum Zitat Jönsson O, Polman E, Jensen JK, Eklund R, Schyl H, Ivarsson S (2013) Sustainable gas enters the European gas distribution system. Danish Gas Technology Center Jönsson O, Polman E, Jensen JK, Eklund R, Schyl H, Ivarsson S (2013) Sustainable gas enters the European gas distribution system. Danish Gas Technology Center
12.
Zurück zum Zitat Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380 Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380
13.
Zurück zum Zitat Shin H-C, Park J-W, Park K, Song H-C (2002) Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environ Pollut 119:227–236 Shin H-C, Park J-W, Park K, Song H-C (2002) Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environ Pollut 119:227–236
14.
Zurück zum Zitat Allen MR, Braithwaite A, Hills CC (1997) Trace organic compounds in landfill gas at seven UK waste disposal sites. Environ Sci Technol 31:1054–1061 Allen MR, Braithwaite A, Hills CC (1997) Trace organic compounds in landfill gas at seven UK waste disposal sites. Environ Sci Technol 31:1054–1061
15.
Zurück zum Zitat Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol 32:2233–2237 Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol 32:2233–2237
16.
Zurück zum Zitat Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86:113–123 Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86:113–123
17.
Zurück zum Zitat Spiegel RJ, Preston JL (2003) Technical assessment of fuel cell operation on anaerobic digester gas at the Yonkers, NY, wastewater treatment plant. Waste Manag 23:709–717 Spiegel RJ, Preston JL (2003) Technical assessment of fuel cell operation on anaerobic digester gas at the Yonkers, NY, wastewater treatment plant. Waste Manag 23:709–717
18.
Zurück zum Zitat Stern SA, Krishnakumar B, Charati SG, Amato WS, Frieman AA, Fuess DJ (1998) Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant. J Membr Sci 151:63–74 Stern SA, Krishnakumar B, Charati SG, Amato WS, Frieman AA, Fuess DJ (1998) Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant. J Membr Sci 151:63–74
19.
Zurück zum Zitat Spiegel RJ, Preston JL (2000) Test results for fuel cell operation on anaerobic digester gas. J Power Sources 86:283–288 Spiegel RJ, Preston JL (2000) Test results for fuel cell operation on anaerobic digester gas. J Power Sources 86:283–288
21.
Zurück zum Zitat Elagroudy S, El-Gohary F (2013) Microwave pre-treatment of mixed sludge for anaerobic digestion enhancement. Int J Therm Environ Eng 5:105–111 Elagroudy S, El-Gohary F (2013) Microwave pre-treatment of mixed sludge for anaerobic digestion enhancement. Int J Therm Environ Eng 5:105–111
22.
Zurück zum Zitat Tanikkul P, Pisutpaisal N (2014) Biohydrogen production under thermophilic condition from ozonated palm oil mill effluent. Energy Procedia 61:1234–1238 Tanikkul P, Pisutpaisal N (2014) Biohydrogen production under thermophilic condition from ozonated palm oil mill effluent. Energy Procedia 61:1234–1238
23.
Zurück zum Zitat Budiman PM, Wu TY (2016) Ultrasonication pre-treatment of combined effluents from palm oil, pulp and paper mills for improving photofermentative biohydrogen production. Energy Convers Manag 119:142–150 Budiman PM, Wu TY (2016) Ultrasonication pre-treatment of combined effluents from palm oil, pulp and paper mills for improving photofermentative biohydrogen production. Energy Convers Manag 119:142–150
24.
Zurück zum Zitat Wong LP, Isa MH, Bashir MJK (2018) Disintegration of palm oil mill effluent organic solids by ultrasonication: optimisation by response surface methodology. Process Saf Environ Prot 114:123–132 Wong LP, Isa MH, Bashir MJK (2018) Disintegration of palm oil mill effluent organic solids by ultrasonication: optimisation by response surface methodology. Process Saf Environ Prot 114:123–132
25.
Zurück zum Zitat Ghaebi H, Yari M, Gargari SG, Rostamzadeh H (2019) Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen. Renew Energy 130:87–102 Ghaebi H, Yari M, Gargari SG, Rostamzadeh H (2019) Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen. Renew Energy 130:87–102
26.
Zurück zum Zitat Zhao X, Babu Joseph JK, Ozcan S (2020) Biogas reforming to syngas: a review. iScience, 23(5). Zhao X, Babu Joseph JK, Ozcan S (2020) Biogas reforming to syngas: a review. iScience, 23(5).
27.
Zurück zum Zitat Braga LB, Silveira JL, Da Silva ME, Tuna CE, Machin EB, Pedroso DT (2013) Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis. Renew Sust Energ Rev 28:166–173 Braga LB, Silveira JL, Da Silva ME, Tuna CE, Machin EB, Pedroso DT (2013) Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis. Renew Sust Energ Rev 28:166–173
28.
Zurück zum Zitat Chiodo V, Maisano S, Zafarana G, Urbani F (2017) Effect of pollutants on biogas steam reforming. Int J Hydrog Energy 42(3):1622–1628 Chiodo V, Maisano S, Zafarana G, Urbani F (2017) Effect of pollutants on biogas steam reforming. Int J Hydrog Energy 42(3):1622–1628
29.
Zurück zum Zitat Avraam DG, Halkides TI, Liguras DK, Bereketidou OA, Goula MA (2010) An experimental and theoretical approach for the biogas steam reforming reaction. Int J Hydrog Energy 35(18):9818–9827 Avraam DG, Halkides TI, Liguras DK, Bereketidou OA, Goula MA (2010) An experimental and theoretical approach for the biogas steam reforming reaction. Int J Hydrog Energy 35(18):9818–9827
30.
Zurück zum Zitat Ahmed S, Lee SH, Ferrandon MS (2015) Catalytic steam reforming of biogas–effects of feed composition and operating conditions. Int J Hydrog Energy 40(2):1005–1015 Ahmed S, Lee SH, Ferrandon MS (2015) Catalytic steam reforming of biogas–effects of feed composition and operating conditions. Int J Hydrog Energy 40(2):1005–1015
31.
Zurück zum Zitat Kolbitsch P, Pfeifer C, Hofbauer H (2008) Catalytic steam reforming of model biogas. Fuel 87(6):701–706 Kolbitsch P, Pfeifer C, Hofbauer H (2008) Catalytic steam reforming of model biogas. Fuel 87(6):701–706
32.
Zurück zum Zitat Effendi A, Hellgardt K, Zhang ZG, Yoshida T (2005) Optimising H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 84(7-8):869–874 Effendi A, Hellgardt K, Zhang ZG, Yoshida T (2005) Optimising H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 84(7-8):869–874
33.
Zurück zum Zitat Ashrafi M, Pröll T, Pfeifer C, Hofbauer H (2008) Experimental study of model biogas catalytic steam reforming: 1. Thermodynamic optimization. Energy Fuel 22(6):4182–4189 Ashrafi M, Pröll T, Pfeifer C, Hofbauer H (2008) Experimental study of model biogas catalytic steam reforming: 1. Thermodynamic optimization. Energy Fuel 22(6):4182–4189
34.
Zurück zum Zitat Ashrafi M, Pfeifer C, Pröll T, Hofbauer H (2008) Experimental study of model biogas catalytic steam reforming: 2. Impact of sulfur on the deactivation and regeneration of Ni-based catalysts. Energy Fuel 22(6):4190–4195 Ashrafi M, Pfeifer C, Pröll T, Hofbauer H (2008) Experimental study of model biogas catalytic steam reforming: 2. Impact of sulfur on the deactivation and regeneration of Ni-based catalysts. Energy Fuel 22(6):4190–4195
35.
Zurück zum Zitat Izquierdo U, Barrio VL, Lago N, Requies J, Cambra JF, Güemez MB, Arias PL (2012) Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and microreactor reaction systems. Int J Hydrog Energy 37(18):13829–13842 Izquierdo U, Barrio VL, Lago N, Requies J, Cambra JF, Güemez MB, Arias PL (2012) Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and microreactor reaction systems. Int J Hydrog Energy 37(18):13829–13842
36.
Zurück zum Zitat Alves HJ, Junior CB, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araújo CH (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrog Energy 38(13):5215–5225 Alves HJ, Junior CB, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araújo CH (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrog Energy 38(13):5215–5225
37.
Zurück zum Zitat Santarelli M, Quesito F, Novaresio V, Guerra C, Lanzini A, Beretta D (2013) Direct reforming of biogas on Ni-based SOFC anodes: modelling of heterogeneous reactions and validation with experiments. J Power Sources 242:405–414 Santarelli M, Quesito F, Novaresio V, Guerra C, Lanzini A, Beretta D (2013) Direct reforming of biogas on Ni-based SOFC anodes: modelling of heterogeneous reactions and validation with experiments. J Power Sources 242:405–414
38.
Zurück zum Zitat Corigliano O, Fragiacomo P (2017) Numerical modeling of an indirect internal CO2 reforming solid oxide fuel cell energy system fed by biogas. Fuel 196:352–361 Corigliano O, Fragiacomo P (2017) Numerical modeling of an indirect internal CO2 reforming solid oxide fuel cell energy system fed by biogas. Fuel 196:352–361
39.
Zurück zum Zitat Kim S, Bae J (2014) Numerical analysis of a 20-kWe biogas steam reformer in PEMFC applications. Int J Hydrog Energy 39(34):19485–19493 Kim S, Bae J (2014) Numerical analysis of a 20-kWe biogas steam reformer in PEMFC applications. Int J Hydrog Energy 39(34):19485–19493
40.
Zurück zum Zitat Chiodo V, Galvagno A, Lanzini A, Papurello D, Urbani F, Santarelli M, Freni S (2015) Biogas reforming process investigation for SOFC application. Energy Convers Manag 98:252–258 Chiodo V, Galvagno A, Lanzini A, Papurello D, Urbani F, Santarelli M, Freni S (2015) Biogas reforming process investigation for SOFC application. Energy Convers Manag 98:252–258
41.
Zurück zum Zitat Mozdzierz M, Brus G, Sciazko A, Komatsu Y, Kimijima S, Szmyd JS (2016) Towards a thermal optimization of a methane/steam reforming reactor. Flow Turbul Combust 97(1):171–189 Mozdzierz M, Brus G, Sciazko A, Komatsu Y, Kimijima S, Szmyd JS (2016) Towards a thermal optimization of a methane/steam reforming reactor. Flow Turbul Combust 97(1):171–189
42.
Zurück zum Zitat Xuan J, Leung MK, Leung DY, Ni M (2009) Integrating chemical kinetics with CFD modeling for autothermal reforming of biogas. Int J Hydrog Energy 34(22):9076–9086 Xuan J, Leung MK, Leung DY, Ni M (2009) Integrating chemical kinetics with CFD modeling for autothermal reforming of biogas. Int J Hydrog Energy 34(22):9076–9086
43.
Zurück zum Zitat Hamedi MR, Tsolakis A, Lau CS (2014) Biogas upgrading for on-board hydrogen production: reforming process CFD modelling. Int J Hydrog Energy 39(24):12532–12540 Hamedi MR, Tsolakis A, Lau CS (2014) Biogas upgrading for on-board hydrogen production: reforming process CFD modelling. Int J Hydrog Energy 39(24):12532–12540
44.
Zurück zum Zitat Cipitì F, Barbera O, Briguglio N, Giacoppo G, Italiano C, Vita A (2016) Design of a biogas steam reforming reactor: a modelling and experimental approach. Int J Hydrog Energy 41(27):11577–11583 Cipitì F, Barbera O, Briguglio N, Giacoppo G, Italiano C, Vita A (2016) Design of a biogas steam reforming reactor: a modelling and experimental approach. Int J Hydrog Energy 41(27):11577–11583
45.
Zurück zum Zitat Camacho YM, Bensaid S, Lorentzou S, Vlachos N, Pantoleontos G, Konstandopoulos A, Luneau M, Meunier FC, Guilhaume N, Schuurman Y, Werzner E (2017) Development of a robust and efficient biogas processor for hydrogen production. Part 1: modelling and simulation. Int J Hydrog Energy 42(36):22841–22855 Camacho YM, Bensaid S, Lorentzou S, Vlachos N, Pantoleontos G, Konstandopoulos A, Luneau M, Meunier FC, Guilhaume N, Schuurman Y, Werzner E (2017) Development of a robust and efficient biogas processor for hydrogen production. Part 1: modelling and simulation. Int J Hydrog Energy 42(36):22841–22855
46.
Zurück zum Zitat Palma V, Ricca A, Meloni E, Martino M, Miccio M, Ciambelli P (2016) Experimental and numerical investigations on structured catalysts for methane steam reforming intensification. J Clean Prod 111:217–230 Palma V, Ricca A, Meloni E, Martino M, Miccio M, Ciambelli P (2016) Experimental and numerical investigations on structured catalysts for methane steam reforming intensification. J Clean Prod 111:217–230
47.
Zurück zum Zitat Minchener AJ (2005) Coal gasification for advanced power generation. Fuel 84(17):2222–2235 Minchener AJ (2005) Coal gasification for advanced power generation. Fuel 84(17):2222–2235
48.
Zurück zum Zitat Prins MJ, Ptasinski KJ, Janssen FJJG (2007) From coal to biomass gasification: comparison of thermodynamic efficiency. Energy 32(7):1248–1259 Prins MJ, Ptasinski KJ, Janssen FJJG (2007) From coal to biomass gasification: comparison of thermodynamic efficiency. Energy 32(7):1248–1259
49.
Zurück zum Zitat de Souza-Santos ML (2004) Solid fuels combustion and gasification: modeling, simulation, and equipment operation. Mechanical engineering. Vol. 180., New York: Marcel Dekker. 439 de Souza-Santos ML (2004) Solid fuels combustion and gasification: modeling, simulation, and equipment operation. Mechanical engineering. Vol. 180., New York: Marcel Dekker. 439
50.
Zurück zum Zitat Patel KS, Sunol AK (2007) Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor. Int J Hydrog Energy 32(13):2344–2358 Patel KS, Sunol AK (2007) Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor. Int J Hydrog Energy 32(13):2344–2358
51.
Zurück zum Zitat Chein R, Chen YC, Chung JN (2013) Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production. Appl Energy 102:1022–1034 Chein R, Chen YC, Chung JN (2013) Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production. Appl Energy 102:1022–1034
52.
Zurück zum Zitat Murmura MA, Cerbelli S, Annesini MC (2017) An equilibrium theory for catalytic steam reforming in membrane reactors. Chem Eng Sci 160:291–303 Murmura MA, Cerbelli S, Annesini MC (2017) An equilibrium theory for catalytic steam reforming in membrane reactors. Chem Eng Sci 160:291–303
53.
Zurück zum Zitat Murmura MA, Cerbelli S, Annesini MC (2017) Transport-reaction-permeation regimes in catalytic membrane reactors for hydrogen production. The steam reforming of methane as a case study. Chem Eng Sci 162:88–103 Murmura MA, Cerbelli S, Annesini MC (2017) Transport-reaction-permeation regimes in catalytic membrane reactors for hydrogen production. The steam reforming of methane as a case study. Chem Eng Sci 162:88–103
54.
Zurück zum Zitat Schädel BT, Duisberg M, Deutschmann O (2009) Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst. Catal Today 142(1-2):42–51 Schädel BT, Duisberg M, Deutschmann O (2009) Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst. Catal Today 142(1-2):42–51
55.
Zurück zum Zitat Khzouz M, Gkanas EI (2018) Experimental and numerical study of low temperature methane steam reforming for hydrogen production. Catalysts 8(1):5 Khzouz M, Gkanas EI (2018) Experimental and numerical study of low temperature methane steam reforming for hydrogen production. Catalysts 8(1):5
56.
Zurück zum Zitat Bion N, Epron F, Duprez D (2010) Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming. Catalysis 22:1–55 Bion N, Epron F, Duprez D (2010) Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming. Catalysis 22:1–55
57.
Zurück zum Zitat Angeli SD, Pilitsis FG, Lemonidou AA (2015) Methane steam reforming at low temperature: effect of light alkanes’ presence on coke formation. Catal Today 242:119–128 Angeli SD, Pilitsis FG, Lemonidou AA (2015) Methane steam reforming at low temperature: effect of light alkanes’ presence on coke formation. Catal Today 242:119–128
58.
Zurück zum Zitat Shagdar E, Lougou BG, Shuai Y, Ganbold E, Chinonso OP, Tan H (2020) Process analysis of solar steam reforming of methane for producing low-carbon hydrogen. RSC Adv 10(21):12582–12597 Shagdar E, Lougou BG, Shuai Y, Ganbold E, Chinonso OP, Tan H (2020) Process analysis of solar steam reforming of methane for producing low-carbon hydrogen. RSC Adv 10(21):12582–12597
59.
Zurück zum Zitat Padro CEG and Putsche V Survey of the economics of hydrogen technologies. National Renewable Energy Laboratory. September 1999 Padro CEG and Putsche V Survey of the economics of hydrogen technologies. National Renewable Energy Laboratory. September 1999
Metadaten
Titel
Technical feasibility of reforming anaerobic digestion and landfill biogas streams into bio-hydrogen
verfasst von
Isam Janajreh
Idowu Adeyemi
Sherien Elagroudy
Publikationsdatum
10.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00911-x

Weitere Artikel der Ausgabe 2/2021

Biomass Conversion and Biorefinery 2/2021 Zur Ausgabe