Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2016

13.01.2016

Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys

verfasst von: P. Q. Dai, C. Zhang, J. C. Wen, H. C. Rao, Q. T. Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocrystalline Ni-Cu alloys with a Cu content of 6, 10, 19, and 32 wt.% were prepared by pulse electrodeposition. The microstructure and tensile properties of the nanocrystalline Ni-Cu alloys were characterized by x-ray diffraction, transmission electron microscopy, and tensile testing. The x-ray diffraction analysis indicates that the structure of the nanocrystalline Ni-Cu alloys is a face-centered cubic, single-phase solid solution with an average grain size of 18 to 24 nm, and that the average grain size decreased with increasing Cu content. The ultimate tensile strength (~1265 to 1640 MPa) and elongation to failure (~5.8 to 8.9%) of the Ni-Cu alloys increased with increasing Cu content. The increase in tensile strength results from the solid solution and fine-grain strengthening. Elemental Cu addition results in a decrease in stacking fault energy, an increase in work hardening rate, a delay in plasticity instability, and consequently, a higher plasticity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48, p 1–29CrossRef H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48, p 1–29CrossRef
2.
Zurück zum Zitat K.S. Kumar, H.S. Van, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, 51, p 5743–5774CrossRef K.S. Kumar, H.S. Van, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, 51, p 5743–5774CrossRef
3.
Zurück zum Zitat H. Gleiter, Nanocrystalline Materials, Prog. Mater Sci., 1989, 33, p 223–315CrossRef H. Gleiter, Nanocrystalline Materials, Prog. Mater Sci., 1989, 33, p 223–315CrossRef
4.
Zurück zum Zitat H. Li and F. Ebrahimi, Tensile Behavior of a Nanocrystalline Ni-Fe Alloy, Acta Mater., 2006, 54, p 2877–2886CrossRef H. Li and F. Ebrahimi, Tensile Behavior of a Nanocrystalline Ni-Fe Alloy, Acta Mater., 2006, 54, p 2877–2886CrossRef
5.
Zurück zum Zitat G.J. Fan, L.F. Fu, G.Y. Wang, H. Choo, P.K. Liaw, and N.D. Browning, Mechanical Behavior of a Bulk Nanocrystalline Ni-Fe Alloy, J. Alloys Compd., 2007, 434, p 298–300CrossRef G.J. Fan, L.F. Fu, G.Y. Wang, H. Choo, P.K. Liaw, and N.D. Browning, Mechanical Behavior of a Bulk Nanocrystalline Ni-Fe Alloy, J. Alloys Compd., 2007, 434, p 298–300CrossRef
6.
Zurück zum Zitat H.A. Padilla, II, B.L. Boyce, C.C. Battaile, and S.V. Prasad, Frictional Performance and Near-Surface Evolution of Nanocrystalline Ni-Fe as Governed by Contact Stress and Sliding Velocity, Wear, 2013, 297, p 860–871CrossRef H.A. Padilla, II, B.L. Boyce, C.C. Battaile, and S.V. Prasad, Frictional Performance and Near-Surface Evolution of Nanocrystalline Ni-Fe as Governed by Contact Stress and Sliding Velocity, Wear, 2013, 297, p 860–871CrossRef
7.
Zurück zum Zitat S.K. Ghosh, G.K. Dey, R.O. Dusane, and A.K. Grover, Improved Pitting Corrosion Behaviour of Electrodeposited Nanocrystalline Ni-Cu Alloys in 3.0 wt.% NaCl Solution, J. Alloys Compd., 2006, 426, p 235–243CrossRef S.K. Ghosh, G.K. Dey, R.O. Dusane, and A.K. Grover, Improved Pitting Corrosion Behaviour of Electrodeposited Nanocrystalline Ni-Cu Alloys in 3.0 wt.% NaCl Solution, J. Alloys Compd., 2006, 426, p 235–243CrossRef
8.
Zurück zum Zitat T. Hanlon, E.D. Tabachnikova, and S. Suresh, Fatigue Behavior of Nanocrystalline Metals and Alloys, Int. J. Fatigue, 2005, 27, p 1147–1158CrossRef T. Hanlon, E.D. Tabachnikova, and S. Suresh, Fatigue Behavior of Nanocrystalline Metals and Alloys, Int. J. Fatigue, 2005, 27, p 1147–1158CrossRef
9.
Zurück zum Zitat I. Baskaran, T.S. Sankara, and A. Stephen, Pulsed Electrodeposition of Nanocrystalline Cu-Ni Alloy Films and Evaluation of Their Characteristic Properties, Mater. Lett., 2006, 60, p 1990–1995CrossRef I. Baskaran, T.S. Sankara, and A. Stephen, Pulsed Electrodeposition of Nanocrystalline Cu-Ni Alloy Films and Evaluation of Their Characteristic Properties, Mater. Lett., 2006, 60, p 1990–1995CrossRef
10.
Zurück zum Zitat S.K. Ghosh, A.K. Grover, G.K. Dey, and M.K. Totlani, Nanocrystalline Ni-Cu Alloy Plating by Pulse Electrolysis, Surf. Coat. Technol., 2000, 126, p 48–63CrossRef S.K. Ghosh, A.K. Grover, G.K. Dey, and M.K. Totlani, Nanocrystalline Ni-Cu Alloy Plating by Pulse Electrolysis, Surf. Coat. Technol., 2000, 126, p 48–63CrossRef
11.
Zurück zum Zitat E. Pellicer, A. Varea, S. Pané, K.M. Sivaraman, B.J. Nelson, N.S. Suri, M.D. Bar, and J.A. Sort, Comparison Between Fine-Grained and Nanocrystalline Electrodeposited Cu-Ni Films. Insights on Mechanical and Corrosion Performance, Surf. Coat. Technol., 2011, 205, p 5285–5293CrossRef E. Pellicer, A. Varea, S. Pané, K.M. Sivaraman, B.J. Nelson, N.S. Suri, M.D. Bar, and J.A. Sort, Comparison Between Fine-Grained and Nanocrystalline Electrodeposited Cu-Ni Films. Insights on Mechanical and Corrosion Performance, Surf. Coat. Technol., 2011, 205, p 5285–5293CrossRef
12.
Zurück zum Zitat E. Pellicer, A. Varea, S. Pané, B.J. Nelson, E. Men, M. Estrader, S. Surinach, M.D. Bar, J. Nogu, and J. Sort, Nanocrystalline Electroplated Cu-Ni: Metallic Thin Films with Enhanced Mechanical Properties and Tunable Magnetic Behavior, Adv. Funct. Mater., 2010, 20, p 983–991CrossRef E. Pellicer, A. Varea, S. Pané, B.J. Nelson, E. Men, M. Estrader, S. Surinach, M.D. Bar, J. Nogu, and J. Sort, Nanocrystalline Electroplated Cu-Ni: Metallic Thin Films with Enhanced Mechanical Properties and Tunable Magnetic Behavior, Adv. Funct. Mater., 2010, 20, p 983–991CrossRef
13.
Zurück zum Zitat X. Shen, J. Lian, Z. Jiang, J. Zhonghao, and J. Qing, High Strength and High Ductility of Electrodeposited Nanocrystalline Ni with a Broad Grain Size Distribution, Mater. Sci. Eng. A, 2008, 487, p 410–416CrossRef X. Shen, J. Lian, Z. Jiang, J. Zhonghao, and J. Qing, High Strength and High Ductility of Electrodeposited Nanocrystalline Ni with a Broad Grain Size Distribution, Mater. Sci. Eng. A, 2008, 487, p 410–416CrossRef
14.
Zurück zum Zitat S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, and K. Han, Tensile Properties of In Situ Consolidated Nanocrystalline Cu, Acta Mater., 2005, 53, p 1521–1533CrossRef S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, and K. Han, Tensile Properties of In Situ Consolidated Nanocrystalline Cu, Acta Mater., 2005, 53, p 1521–1533CrossRef
15.
Zurück zum Zitat L. Qin, J. Lian, and Q. Jiang, Enhanced Ductility of High-Strength Electrodeposited Nanocrystalline Ni-Co Alloy with Fine Grain Size, J. Alloys Compd., 2010, 504, p S439–S442CrossRef L. Qin, J. Lian, and Q. Jiang, Enhanced Ductility of High-Strength Electrodeposited Nanocrystalline Ni-Co Alloy with Fine Grain Size, J. Alloys Compd., 2010, 504, p S439–S442CrossRef
16.
Zurück zum Zitat K.S. Willson and J.A. Rogers, Orientation, Crystal Structure and Appearance of Nickel Deposits from a Watts Bath Containing Coumarin, J. Tech. Proc. Am. Electroplat. Soc., 1964, 51, p 92–95 K.S. Willson and J.A. Rogers, Orientation, Crystal Structure and Appearance of Nickel Deposits from a Watts Bath Containing Coumarin, J. Tech. Proc. Am. Electroplat. Soc., 1964, 51, p 92–95
17.
Zurück zum Zitat W. Xu, P. Dai, and X. Wu, Effect of Stress-Induced Grain Growth During Room Temperature Tensile Deformation on Ductility in Nanocrystalline Metals, Bull. Mater. Sci., 2010, 33, p 561–568CrossRef W. Xu, P. Dai, and X. Wu, Effect of Stress-Induced Grain Growth During Room Temperature Tensile Deformation on Ductility in Nanocrystalline Metals, Bull. Mater. Sci., 2010, 33, p 561–568CrossRef
18.
Zurück zum Zitat A.J. Detor and C.A. Schuh, Tailoring and Patterning the Grain Size of Nanocrystalline Alloys, Acta Mater., 2007, 55, p 371–379CrossRef A.J. Detor and C.A. Schuh, Tailoring and Patterning the Grain Size of Nanocrystalline Alloys, Acta Mater., 2007, 55, p 371–379CrossRef
19.
Zurück zum Zitat H. Li and F. Ebrahimi, Synthesis and Characterization of Electrodeposited Nanocrystalline Nickel-Iron Alloys, Mater. Sci. Eng. A, 2003, 347, p 93–101CrossRef H. Li and F. Ebrahimi, Synthesis and Characterization of Electrodeposited Nanocrystalline Nickel-Iron Alloys, Mater. Sci. Eng. A, 2003, 347, p 93–101CrossRef
20.
Zurück zum Zitat H. Li, F. Ebrahimi, H. Choo, and P.K. Liaw, Grain Size Dependence of Tensile Behavior in Nanocrystalline Ni-Fe Alloys, J. Mater. Sci., 2006, 41, p 7636–7642CrossRef H. Li, F. Ebrahimi, H. Choo, and P.K. Liaw, Grain Size Dependence of Tensile Behavior in Nanocrystalline Ni-Fe Alloys, J. Mater. Sci., 2006, 41, p 7636–7642CrossRef
21.
Zurück zum Zitat K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Deformation of Electrodeposited Nanocrystalline Nickel, Acta Mater., 2003, 51, p 387–405CrossRef K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Deformation of Electrodeposited Nanocrystalline Nickel, Acta Mater., 2003, 51, p 387–405CrossRef
22.
Zurück zum Zitat M. Prasad and A.H. Chokshi, Deformation-Induced Thermally Activated Grain Growth in Nanocrystalline Nickel, Scripta Mater., 2012, 67, p 133–136CrossRef M. Prasad and A.H. Chokshi, Deformation-Induced Thermally Activated Grain Growth in Nanocrystalline Nickel, Scripta Mater., 2012, 67, p 133–136CrossRef
23.
Zurück zum Zitat J. Mu, X. Li, L. Zhao, Z. Jiang, J. Lian, and Q. Jiang, Stable Ductility of an Electrodeposited Nanocrystalline Ni-20wt. % Fe Alloy in Tensile Plastic Deformation, J. Alloys Compd., 2013, 553, p 99–105CrossRef J. Mu, X. Li, L. Zhao, Z. Jiang, J. Lian, and Q. Jiang, Stable Ductility of an Electrodeposited Nanocrystalline Ni-20wt. % Fe Alloy in Tensile Plastic Deformation, J. Alloys Compd., 2013, 553, p 99–105CrossRef
24.
Zurück zum Zitat F.T. Dalla, H.S. Van, and M. Victoria, Nanocrystalline Electrodeposited Ni: Microstructure and Tensile Properties, Acta Mater., 2002, 50, p 3957–3970CrossRef F.T. Dalla, H.S. Van, and M. Victoria, Nanocrystalline Electrodeposited Ni: Microstructure and Tensile Properties, Acta Mater., 2002, 50, p 3957–3970CrossRef
25.
Zurück zum Zitat Y.B. Wang, J.C. Ho, X.Z. Liao, H.Q. Li, S.P. Ringer, and Y.T. Zhu, Mechanism of Grain Growth During Severe Plastic Deformation of a Nanocrystalline Ni-Fe Alloy, Appl. Phys. Lett., 2009, 94, p p011908 Y.B. Wang, J.C. Ho, X.Z. Liao, H.Q. Li, S.P. Ringer, and Y.T. Zhu, Mechanism of Grain Growth During Severe Plastic Deformation of a Nanocrystalline Ni-Fe Alloy, Appl. Phys. Lett., 2009, 94, p p011908
26.
Zurück zum Zitat S. Ni, Y.B. Wang, X.Z. Liao, S.N. Alhajeri, H.Q. Li, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Grain Growth and Dislocation Density Evolution in a Nanocrystalline Ni-Fe Alloy Induced by High-Pressure Torsion, Scripta Mater., 2011, 64, p 327–330CrossRef S. Ni, Y.B. Wang, X.Z. Liao, S.N. Alhajeri, H.Q. Li, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Grain Growth and Dislocation Density Evolution in a Nanocrystalline Ni-Fe Alloy Induced by High-Pressure Torsion, Scripta Mater., 2011, 64, p 327–330CrossRef
27.
Zurück zum Zitat D.K. Chaudhuri, D. Xie, and A.N. Lakshmanan, The Influence of Stacking Fault Energy on the Wear Resistance of Nickel Base Alloys, Wear, 1997, 209, p 140–152CrossRef D.K. Chaudhuri, D. Xie, and A.N. Lakshmanan, The Influence of Stacking Fault Energy on the Wear Resistance of Nickel Base Alloys, Wear, 1997, 209, p 140–152CrossRef
28.
Zurück zum Zitat K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, and C. Koch, Effect of Stacking Fault Energy on Mechanical Behavior of Bulk Nanocrystalline Cu and Cu Alloys, Acta Mater., 2011, 59, p 5758–5764CrossRef K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, and C. Koch, Effect of Stacking Fault Energy on Mechanical Behavior of Bulk Nanocrystalline Cu and Cu Alloys, Acta Mater., 2011, 59, p 5758–5764CrossRef
29.
Zurück zum Zitat K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero, and Z. Horita, Influence of Dislocation-Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys After Severe Plastic Deformation Using High-Pressure Torsion, Acta Mater., 2014, 69, p 68–77CrossRef K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero, and Z. Horita, Influence of Dislocation-Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys After Severe Plastic Deformation Using High-Pressure Torsion, Acta Mater., 2014, 69, p 68–77CrossRef
30.
Zurück zum Zitat Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horita, and T.G. Langdon, Influence of Stacking Fault Energy on Deformation Mechanism and Dislocation Storage Capacity in Ultrafine-Grained Materials, Scripta Mater., 2009, 60, p 52–55CrossRef Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horita, and T.G. Langdon, Influence of Stacking Fault Energy on Deformation Mechanism and Dislocation Storage Capacity in Ultrafine-Grained Materials, Scripta Mater., 2009, 60, p 52–55CrossRef
31.
Zurück zum Zitat Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, and Y.T. Zhu, Determining the Optimal Stacking Fault Energy for Achieving High Ductility in Ultrafine-Grained Cu-Zn Alloys, Mater. Sci. Eng. A, 2008, 493, p 123–129CrossRef Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, and Y.T. Zhu, Determining the Optimal Stacking Fault Energy for Achieving High Ductility in Ultrafine-Grained Cu-Zn Alloys, Mater. Sci. Eng. A, 2008, 493, p 123–129CrossRef
32.
Zurück zum Zitat V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Deformation-Mechanism Map for Nanocrystalline Metals by Molecular-Dynamics Simulation, Nat. Mater., 2003, 3, p 43–47CrossRef V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Deformation-Mechanism Map for Nanocrystalline Metals by Molecular-Dynamics Simulation, Nat. Mater., 2003, 3, p 43–47CrossRef
33.
Zurück zum Zitat X.Y. Zhang, X.L. Wu, and A.W. Zhu, Growth of Deformation Twins in Room-Temperature Rolled Nanocrystalline Nickel, Appl. Phys. Lett., 2009, 94, p p121907CrossRef X.Y. Zhang, X.L. Wu, and A.W. Zhu, Growth of Deformation Twins in Room-Temperature Rolled Nanocrystalline Nickel, Appl. Phys. Lett., 2009, 94, p p121907CrossRef
34.
Zurück zum Zitat H.S. Van, P.M. Derlet, and A.G. Frøseth, Stacking Fault Energies and Slip in Nanocrystalline Metals, Nat. Mater., 2004, 3, p 399–403CrossRef H.S. Van, P.M. Derlet, and A.G. Frøseth, Stacking Fault Energies and Slip in Nanocrystalline Metals, Nat. Mater., 2004, 3, p 399–403CrossRef
35.
Zurück zum Zitat S. Yip, Nanocrystalline Metals: Mapping Plasticity, Nat. Mater., 2004, 3, p 11–12CrossRef S. Yip, Nanocrystalline Metals: Mapping Plasticity, Nat. Mater., 2004, 3, p 11–12CrossRef
36.
Zurück zum Zitat R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Mechanical Properties of Nanostructured FCC Materials Processed by the ARB Process, Mater. Sci. Eng. A, 2014, 606, p 443–450CrossRef R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Mechanical Properties of Nanostructured FCC Materials Processed by the ARB Process, Mater. Sci. Eng. A, 2014, 606, p 443–450CrossRef
37.
Zurück zum Zitat P.L. Sun, Y.H. Zhao, J.C. Cooley, M.E. Kassner, Z. Horita, T.G. Langdon, E.J. Lavernia, and Y.T. Zhu, Effect of Stacking Fault Energy on Strength and Ductility of Nanostructured Alloys: An Evaluation with Minimum Solution Hardening, Mater. Sci. Eng. A, 2009, 525, p 83–86CrossRef P.L. Sun, Y.H. Zhao, J.C. Cooley, M.E. Kassner, Z. Horita, T.G. Langdon, E.J. Lavernia, and Y.T. Zhu, Effect of Stacking Fault Energy on Strength and Ductility of Nanostructured Alloys: An Evaluation with Minimum Solution Hardening, Mater. Sci. Eng. A, 2009, 525, p 83–86CrossRef
38.
Zurück zum Zitat Y.T. Zhu and X. Liao, Nanostructured Metals: Retaining Ductility, Nat. Mater., 2004, 3, p 351–352CrossRef Y.T. Zhu and X. Liao, Nanostructured Metals: Retaining Ductility, Nat. Mater., 2004, 3, p 351–352CrossRef
Metadaten
Titel
Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys
verfasst von
P. Q. Dai
C. Zhang
J. C. Wen
H. C. Rao
Q. T. Wang
Publikationsdatum
13.01.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-1881-2

Weitere Artikel der Ausgabe 2/2016

Journal of Materials Engineering and Performance 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.