Skip to main content
Erschienen in: Journal of Computational Electronics 3/2019

10.06.2019

The effects of a Stone–Wales defect on the performance of a graphene-nanoribbon-based Schottky diode

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of a Stone–Wales defect on the performance of a graphene-nanoribbon-based Schottky diode are studied herein. To this end, the transmission, energy band structure, density of states, carrier concentration, and current density of the proposed device are modeled analytically in two cases, viz. a pristine and defective graphene nanoribbon, and the results are compared. The results reveal that the introduction of a Stone–Wales defect into the symmetric graphene nanoribbon system obviously changes some of the distinctive properties. After the introduction of a Stone–Wales defect, the slope of the energy levels in the graphene nanoribbon is reduced, leading to a decrease in the Fermi velocity. In this case, the band gap near the Dirac points in the energy band structure is increased. The minimum density of states of the defect-free graphene is almost zero, which can be explained by the shape of the energy band diagram at the Dirac point. Moreover, the minimum density of states in the presence of a Stone–Wales defect is higher than in the defect-free condition, owing to the presence of bands throughout the energy diagram. Finally, the effects of the temperature and channel width on the IV characteristic of the proposed Schottky diode based on a defect-free or defective graphene nanoribbon are studied analytically, and the efficiency of the device is investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 22(306), 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 22(306), 666–669 (2004)CrossRef
2.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
3.
Zurück zum Zitat Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRef Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRef
5.
Zurück zum Zitat Dragoman, M., Dragoman, D.: Graphene-based quantum electronics. Quantum Electron. 33(6), 165–214 (2009)MATHCrossRef Dragoman, M., Dragoman, D.: Graphene-based quantum electronics. Quantum Electron. 33(6), 165–214 (2009)MATHCrossRef
6.
Zurück zum Zitat Rahmani, M., Ahmadi, M.T., Ismail, R., Ghadiry, M.H.: Performance of bilayer graphene nanoribbon Schottky diode in comparison with conventional diodes. J. Comput. Theor. Nanosci. 10(2), 323–327 (2013)CrossRef Rahmani, M., Ahmadi, M.T., Ismail, R., Ghadiry, M.H.: Performance of bilayer graphene nanoribbon Schottky diode in comparison with conventional diodes. J. Comput. Theor. Nanosci. 10(2), 323–327 (2013)CrossRef
7.
Zurück zum Zitat Terronesa, M., Botello-Méndezb, A., Delgadoc, J.C.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4), 351–372 (2010)CrossRef Terronesa, M., Botello-Méndezb, A., Delgadoc, J.C.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4), 351–372 (2010)CrossRef
8.
Zurück zum Zitat Karimi, H., Ahmadi, M.T., Rahmani, M., Akbari, E., Kiani, M.J., Khalid, M.: Analytical modeling of graphene-based DNA sensor. Sci. Adv. Mater. 4(11), 1142–1147 (2012)CrossRef Karimi, H., Ahmadi, M.T., Rahmani, M., Akbari, E., Kiani, M.J., Khalid, M.: Analytical modeling of graphene-based DNA sensor. Sci. Adv. Mater. 4(11), 1142–1147 (2012)CrossRef
9.
Zurück zum Zitat Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Habibiyan, H., Rahbarpour, S., Rahmani, K.: Analytical investigation on the electro-optical properties of graphene nanoscrolls for SPR-based sensor application. J. Comput. Electron. 16(3), 787–795 (2017)CrossRef Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Habibiyan, H., Rahbarpour, S., Rahmani, K.: Analytical investigation on the electro-optical properties of graphene nanoscrolls for SPR-based sensor application. J. Comput. Electron. 16(3), 787–795 (2017)CrossRef
10.
Zurück zum Zitat Shu-Jen, H., Zhihong, C., Ageeth, A.B., Yanning, S.: Channel-length-dependent transport behaviors of graphene field-effect transistors. IEEE Electron Device Lett. 32(6), 812–814 (2011)CrossRef Shu-Jen, H., Zhihong, C., Ageeth, A.B., Yanning, S.: Channel-length-dependent transport behaviors of graphene field-effect transistors. IEEE Electron Device Lett. 32(6), 812–814 (2011)CrossRef
11.
Zurück zum Zitat Pourasl, A.H., Ahmadi, M.T., Rahmani, M., Chin, H.C., Lim, C.S., Ismail, R., Tan, M.L.P.: Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res. Lett. 9(1), 33 (2014)CrossRef Pourasl, A.H., Ahmadi, M.T., Rahmani, M., Chin, H.C., Lim, C.S., Ismail, R., Tan, M.L.P.: Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res. Lett. 9(1), 33 (2014)CrossRef
12.
Zurück zum Zitat Kiani, M.J., Ahmadi, M.T., Karimi, H., Rahmani, M., Hashim, A., Che Harun, F.K.: Analytical modeling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Res. Lett. 8(1), 173 (2013)CrossRef Kiani, M.J., Ahmadi, M.T., Karimi, H., Rahmani, M., Hashim, A., Che Harun, F.K.: Analytical modeling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Res. Lett. 8(1), 173 (2013)CrossRef
13.
Zurück zum Zitat Avetisyan, A.A., Partoens, B., Peeters, F.M.: Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81, 115432 (2010)CrossRef Avetisyan, A.A., Partoens, B., Peeters, F.M.: Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81, 115432 (2010)CrossRef
14.
Zurück zum Zitat Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Rahmani, K.: Analytical prediction of carbon nanoscroll-based electrochemical glucose biosensor performance. Int. J. Environ. Anal. Chem. 97(11), 1024–1036 (2017)CrossRef Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Rahmani, K.: Analytical prediction of carbon nanoscroll-based electrochemical glucose biosensor performance. Int. J. Environ. Anal. Chem. 97(11), 1024–1036 (2017)CrossRef
15.
Zurück zum Zitat Ahmadi, M.T., Rahmani, M., Ghadiry, M.H., Ismail, R.: Monolayer graphene nanoribbon homojunction characteristics. Sci. Adv. Mater. 4(7), 753–756 (2012)CrossRef Ahmadi, M.T., Rahmani, M., Ghadiry, M.H., Ismail, R.: Monolayer graphene nanoribbon homojunction characteristics. Sci. Adv. Mater. 4(7), 753–756 (2012)CrossRef
16.
Zurück zum Zitat Koshino, M.: Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 81(12), 125304 (2010)CrossRef Koshino, M.: Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 81(12), 125304 (2010)CrossRef
17.
Zurück zum Zitat Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Rahmani, K.: An analytical approach to model the optical properties of carbon nanotubes for plasmonic devices. J. Nanoelectron. Optoelectron. 13(2), 208–213 (2018)CrossRef Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Rahmani, K.: An analytical approach to model the optical properties of carbon nanotubes for plasmonic devices. J. Nanoelectron. Optoelectron. 13(2), 208–213 (2018)CrossRef
18.
Zurück zum Zitat Celik, N., Balachandran, W., Manivannan, N.: Graphene-based biosensors: methods, analysis and future perspectives. IET Circuits Devices Syst. 9(6), 434–445 (2015)CrossRef Celik, N., Balachandran, W., Manivannan, N.: Graphene-based biosensors: methods, analysis and future perspectives. IET Circuits Devices Syst. 9(6), 434–445 (2015)CrossRef
19.
Zurück zum Zitat Rahmani, M., Ismail, R., Ahmadi, M.T., Kiani, M.J., Rahmani, K.: Carrier velocity in high-field transport of trilayer graphene nanoribbon field effect transistor. Sci. Adv. Mater. 6(4), 633–639 (2014)CrossRef Rahmani, M., Ismail, R., Ahmadi, M.T., Kiani, M.J., Rahmani, K.: Carrier velocity in high-field transport of trilayer graphene nanoribbon field effect transistor. Sci. Adv. Mater. 6(4), 633–639 (2014)CrossRef
20.
Zurück zum Zitat Venugopal, A., Chan, J., Li, X., Magnuson, C.W., Kirk, W.P., Colombo, L., Ruoff, R.S., Vogel, E.M.: Effective mobility of single-layer graphene transistors as a function of channel dimensions. J. Appl. Phys. 109(10), 104511 (2011)CrossRef Venugopal, A., Chan, J., Li, X., Magnuson, C.W., Kirk, W.P., Colombo, L., Ruoff, R.S., Vogel, E.M.: Effective mobility of single-layer graphene transistors as a function of channel dimensions. J. Appl. Phys. 109(10), 104511 (2011)CrossRef
21.
Zurück zum Zitat Pourasl, A.H., Ahmadi, M.T., Rahmani, M., Ismail, R.: Graphene based biosensor model for Escherichia coli bacteria detection. J. Nanosci. Nanotechnol. 17(1), 601–605 (2017)CrossRef Pourasl, A.H., Ahmadi, M.T., Rahmani, M., Ismail, R.: Graphene based biosensor model for Escherichia coli bacteria detection. J. Nanosci. Nanotechnol. 17(1), 601–605 (2017)CrossRef
23.
Zurück zum Zitat Dorgan, V.E., Bae, M.H., Pop, E.: Mobility and saturation velocity in graphene on SiO2. Appl. Phys. Lett. 97(8), 082112 (2010)CrossRef Dorgan, V.E., Bae, M.H., Pop, E.: Mobility and saturation velocity in graphene on SiO2. Appl. Phys. Lett. 97(8), 082112 (2010)CrossRef
24.
Zurück zum Zitat Rahmani, M., Ahmadi, M.T., Karimi, H., Saeidmanesh, M., Akbari, E., Ismail, R.: Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high speed switching applications. Nanoscale Res. Lett. 8(1), 55 (2013)CrossRef Rahmani, M., Ahmadi, M.T., Karimi, H., Saeidmanesh, M., Akbari, E., Ismail, R.: Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high speed switching applications. Nanoscale Res. Lett. 8(1), 55 (2013)CrossRef
25.
Zurück zum Zitat Kiani, M.J., Ahmadi, M.T., Rahmani, M., Che Harun, F.K.: Degeneracy effect on carrier transport in bilayer graphene nanoribbon. Int. J. Nano Devices Sens. Syst. (IJ-Nano) 2(1), 1–6 (2013) Kiani, M.J., Ahmadi, M.T., Rahmani, M., Che Harun, F.K.: Degeneracy effect on carrier transport in bilayer graphene nanoribbon. Int. J. Nano Devices Sens. Syst. (IJ-Nano) 2(1), 1–6 (2013)
26.
Zurück zum Zitat Hass, J., De Heer, W.A., Conrad, E.H.: The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20(32), 323202 (2008)CrossRef Hass, J., De Heer, W.A., Conrad, E.H.: The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20(32), 323202 (2008)CrossRef
27.
Zurück zum Zitat Karimi, H., Ahmadi, M.T., Yousof, R., Saeidmanesh, M., Rahmani, M., Kiani, M.J., Ghadiry, M.H.: Development of carbon nanotube based biosensors model for detection of single-nucleotide polymorphism. Sci. Adv. Mater. 6(3), 513–519 (2014)CrossRef Karimi, H., Ahmadi, M.T., Yousof, R., Saeidmanesh, M., Rahmani, M., Kiani, M.J., Ghadiry, M.H.: Development of carbon nanotube based biosensors model for detection of single-nucleotide polymorphism. Sci. Adv. Mater. 6(3), 513–519 (2014)CrossRef
28.
Zurück zum Zitat Ghadiry, M.H., Manaf, A.B.A., Nadi, M., Rahmani, M., Ahmadi, M.T.: Ionization coefficient of monolayer graphene nanoribbon. Microelectron. Reliab. 52(7), 1396–1400 (2012)CrossRef Ghadiry, M.H., Manaf, A.B.A., Nadi, M., Rahmani, M., Ahmadi, M.T.: Ionization coefficient of monolayer graphene nanoribbon. Microelectron. Reliab. 52(7), 1396–1400 (2012)CrossRef
29.
Zurück zum Zitat Xie, X., Ju, L., Feng, X., Sun, Y., Zhou, R., Liu, K., Fan, S., Li, Q., Jiang, K.: Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 9(7), 2565–2570 (2009)CrossRef Xie, X., Ju, L., Feng, X., Sun, Y., Zhou, R., Liu, K., Fan, S., Li, Q., Jiang, K.: Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 9(7), 2565–2570 (2009)CrossRef
30.
Zurück zum Zitat Rahmani, M., Ismail, R., Ahmadi, M.T., Ghadiry, M.H.: Quantum confinement effect on trilayer graphene nanoribbon carrier concentration. J. Exp. Nanosci. 9(1), 51–63 (2013)CrossRef Rahmani, M., Ismail, R., Ahmadi, M.T., Ghadiry, M.H.: Quantum confinement effect on trilayer graphene nanoribbon carrier concentration. J. Exp. Nanosci. 9(1), 51–63 (2013)CrossRef
31.
Zurück zum Zitat Kiani, M.J., Che Harun, F.K., Saeidmanesh, M., Rahmani, M., Parvizi, A., Ahmadi, M.T.: Perpendicular electric field effect on electronic properties of bilayer graphene. Sci. Adv. Mater. 5(12), 1954–1959 (2013)CrossRef Kiani, M.J., Che Harun, F.K., Saeidmanesh, M., Rahmani, M., Parvizi, A., Ahmadi, M.T.: Perpendicular electric field effect on electronic properties of bilayer graphene. Sci. Adv. Mater. 5(12), 1954–1959 (2013)CrossRef
32.
Zurück zum Zitat Damon, B.F., Hsin-Ying, C., Yu-Ming, L., Keith, A.J., Fengnian, X., Phaedon, A.: Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9(12), 4474–4478 (2009)CrossRef Damon, B.F., Hsin-Ying, C., Yu-Ming, L., Keith, A.J., Fengnian, X., Phaedon, A.: Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9(12), 4474–4478 (2009)CrossRef
33.
Zurück zum Zitat Rahmani, M., Ahmadi, M.T., Ghadiry, M.H., Anwar, S., Ismail, R.: The effect of applied voltage on the carrier effective mass in ABA trilayer graphene nanoribbon. J. Comput. Theor. Nanosci. 9(10), 1618–1621 (2012)CrossRef Rahmani, M., Ahmadi, M.T., Ghadiry, M.H., Anwar, S., Ismail, R.: The effect of applied voltage on the carrier effective mass in ABA trilayer graphene nanoribbon. J. Comput. Theor. Nanosci. 9(10), 1618–1621 (2012)CrossRef
34.
Zurück zum Zitat Ghadiry, M.H., Nadi, M., Rahmani, M., Ahmadi, M.T., Manaf, A.B.A.: Modeling and simulation of saturation region in double gate graphene nanoribbon transistors. Semicond. J. 46(1), 126–129 (2012)CrossRef Ghadiry, M.H., Nadi, M., Rahmani, M., Ahmadi, M.T., Manaf, A.B.A.: Modeling and simulation of saturation region in double gate graphene nanoribbon transistors. Semicond. J. 46(1), 126–129 (2012)CrossRef
35.
Zurück zum Zitat Rahmani, M., Ahmadi, M.T., Karimi, H., Kiani, M.J., Akbari, E., Ismail, R.: Analytical modeling of monolayer graphene-based NO2 sensor. Sens. Lett. 11(2), 270–275 (2013)CrossRef Rahmani, M., Ahmadi, M.T., Karimi, H., Kiani, M.J., Akbari, E., Ismail, R.: Analytical modeling of monolayer graphene-based NO2 sensor. Sens. Lett. 11(2), 270–275 (2013)CrossRef
36.
Zurück zum Zitat Hammouri, M., Jha, S.K., Vasiliev, I.: First-principles study of graphene and carbon nanotubes functionalized with benzyne. J. Phys. Chem. C 119(32), 18719–18728 (2015)CrossRef Hammouri, M., Jha, S.K., Vasiliev, I.: First-principles study of graphene and carbon nanotubes functionalized with benzyne. J. Phys. Chem. C 119(32), 18719–18728 (2015)CrossRef
37.
Zurück zum Zitat Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H., Lee, J.H.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57(7), 1061–1105 (2012)CrossRef Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H., Lee, J.H.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57(7), 1061–1105 (2012)CrossRef
38.
Zurück zum Zitat Yang, H., Bao, D.D., Liu, H., Zhang, D.Q., Wang, N., Li, H.T.: Functionalization of graphene and applications of the derivatives. J. Inorg. Organomet. Polym. Mater. 27(5), 1129–1141 (2017)CrossRef Yang, H., Bao, D.D., Liu, H., Zhang, D.Q., Wang, N., Li, H.T.: Functionalization of graphene and applications of the derivatives. J. Inorg. Organomet. Polym. Mater. 27(5), 1129–1141 (2017)CrossRef
39.
Zurück zum Zitat Englert, J.M., Dotzer, C., Yang, G., Schmid, M., Papp, C., Gottfried, J.M., Steinrück, H.P., Spiecker, E., Hauke, F., Hirsch, A.: Covalent bulk functionalization of graphene. Nat. Chem. 3, 279–286 (2011)CrossRef Englert, J.M., Dotzer, C., Yang, G., Schmid, M., Papp, C., Gottfried, J.M., Steinrück, H.P., Spiecker, E., Hauke, F., Hirsch, A.: Covalent bulk functionalization of graphene. Nat. Chem. 3, 279–286 (2011)CrossRef
40.
Zurück zum Zitat Vecera, P., Chacón-Torres, J.C., Pichler, T., Reich, S., Soni, H.R., Görling, A., Edelthalhammer, K., Peterlik, H., Hauke, F., Hirsch, A.: Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat. Commun. 8, 15192 (2017)CrossRef Vecera, P., Chacón-Torres, J.C., Pichler, T., Reich, S., Soni, H.R., Görling, A., Edelthalhammer, K., Peterlik, H., Hauke, F., Hirsch, A.: Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat. Commun. 8, 15192 (2017)CrossRef
41.
Zurück zum Zitat Ren, Y., Chen, K.Q.: Effects of symmetry and Stone–Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons. J. Appl. Phys. 107, 044514 (2010)CrossRef Ren, Y., Chen, K.Q.: Effects of symmetry and Stone–Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons. J. Appl. Phys. 107, 044514 (2010)CrossRef
42.
Zurück zum Zitat Ma, J., Alfè, D., Michaelides, A., Wang, E.: Stone–Wales defects in graphene and other planar sp 2-bonded materials. Phys. Rev. B 80, 033407 (2009)CrossRef Ma, J., Alfè, D., Michaelides, A., Wang, E.: Stone–Wales defects in graphene and other planar sp 2-bonded materials. Phys. Rev. B 80, 033407 (2009)CrossRef
43.
Zurück zum Zitat Zeng, H., Zhao, J., Wei, J.W., Hu, H.F.: Effect of N doping and Stone–Wales defects on the electronic properties of graphene nanoribbons. Eur. Phys. J. B 79, 335–340 (2011)CrossRef Zeng, H., Zhao, J., Wei, J.W., Hu, H.F.: Effect of N doping and Stone–Wales defects on the electronic properties of graphene nanoribbons. Eur. Phys. J. B 79, 335–340 (2011)CrossRef
44.
Zurück zum Zitat Rodrigues, J.N.B., Goncalves, P.A.D., Rodrigues, N.F.G., Ribeiro, R.M., Lopes dos Santos, J.M.B., Peres, N.M.R.: Zigzag graphene nanoribbon edge reconstruction with Stone–Wales defects. Phys. Rev. B 84, 155435 (2011)CrossRef Rodrigues, J.N.B., Goncalves, P.A.D., Rodrigues, N.F.G., Ribeiro, R.M., Lopes dos Santos, J.M.B., Peres, N.M.R.: Zigzag graphene nanoribbon edge reconstruction with Stone–Wales defects. Phys. Rev. B 84, 155435 (2011)CrossRef
45.
Zurück zum Zitat Azar, P.P., Namiranian, A.: Stone–Wales defects can cause a metal–semiconductor transition in carbon nanotubes depending on their orientation. J. Phys. Condens. Matter 24, 035301 (2012)CrossRef Azar, P.P., Namiranian, A.: Stone–Wales defects can cause a metal–semiconductor transition in carbon nanotubes depending on their orientation. J. Phys. Condens. Matter 24, 035301 (2012)CrossRef
46.
Zurück zum Zitat Sun, Y.J., Ma, F., Ma, D.Y., Xu, K.W., Chu, P.K.: Stress-induced annihilation of Stone–Wales defects in graphene nanoribbons. J. Phys. D Appl. Phys. 45, 305303 (2012)CrossRef Sun, Y.J., Ma, F., Ma, D.Y., Xu, K.W., Chu, P.K.: Stress-induced annihilation of Stone–Wales defects in graphene nanoribbons. J. Phys. D Appl. Phys. 45, 305303 (2012)CrossRef
47.
Zurück zum Zitat Wang, Z.: The effects of heteroatom-doping in Stone–Wales defects on the electronic properties of graphene nanoribbons. Adv. Mater. Res. 463–464, 793–797 (2012)CrossRef Wang, Z.: The effects of heteroatom-doping in Stone–Wales defects on the electronic properties of graphene nanoribbons. Adv. Mater. Res. 463–464, 793–797 (2012)CrossRef
48.
Zurück zum Zitat Pozrikidis, C.: Effect of the Stone–Wales defect on the structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist. Arch. Appl. Mech. 79(2), 113–123 (2009)MATHCrossRef Pozrikidis, C.: Effect of the Stone–Wales defect on the structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist. Arch. Appl. Mech. 79(2), 113–123 (2009)MATHCrossRef
49.
Zurück zum Zitat Fan, B.B., Yang, X.B., Zhang, R.: Anisotropic mechanical properties and Stone–Wales defects in graphene monolayer: a theoretical study. Phys. Lett. A 374, 2781–2784 (2010)CrossRef Fan, B.B., Yang, X.B., Zhang, R.: Anisotropic mechanical properties and Stone–Wales defects in graphene monolayer: a theoretical study. Phys. Lett. A 374, 2781–2784 (2010)CrossRef
50.
Zurück zum Zitat Mohammadi, A., Haji-Nasiri, S.: The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons. Phys. Lett. A 382(15), 1040–1046 (2018)CrossRef Mohammadi, A., Haji-Nasiri, S.: The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons. Phys. Lett. A 382(15), 1040–1046 (2018)CrossRef
51.
Zurück zum Zitat Rahmani, M., Rahmani, K., Kiani, M.J., Karimi, H., Akbari, E., Ahmadi, M.T., Ismail, R.: Chapter 8: development of gas sensor model for detection of NO2 molecules adsorbed on defect-free and defective graphene. In: Ahmadi, M.T., Ismail, R., Anwar, S. (eds.) Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global, Hershey (2016) Rahmani, M., Rahmani, K., Kiani, M.J., Karimi, H., Akbari, E., Ahmadi, M.T., Ismail, R.: Chapter 8: development of gas sensor model for detection of NO2 molecules adsorbed on defect-free and defective graphene. In: Ahmadi, M.T., Ismail, R., Anwar, S. (eds.) Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global, Hershey (2016)
52.
Zurück zum Zitat Kiani, M.J., Harun, F.C., Ahmadi, M.T., Rahmani, M., Saeidmanesh, M., Zare, M.: Conductance modulation of charged lipid bilayer using electrolyte-gated graphene FET. Nanoscale Res. Lett. 9(1), 371 (2014)CrossRef Kiani, M.J., Harun, F.C., Ahmadi, M.T., Rahmani, M., Saeidmanesh, M., Zare, M.: Conductance modulation of charged lipid bilayer using electrolyte-gated graphene FET. Nanoscale Res. Lett. 9(1), 371 (2014)CrossRef
53.
Zurück zum Zitat Rahmani, M., Ahmadi, M.T., Kiani, M.J., Ismail, R.: Monolayer graphene nanoribbon P-n junction. J. Nanoeng. Nanomanuf. 2(4), 375–378 (2012)CrossRef Rahmani, M., Ahmadi, M.T., Kiani, M.J., Ismail, R.: Monolayer graphene nanoribbon P-n junction. J. Nanoeng. Nanomanuf. 2(4), 375–378 (2012)CrossRef
54.
Zurück zum Zitat Ghadiry, M., Manaf, A.B.A., Nadi, M., Rahmani, M., Ahmadi, M.T.: Theory of ionization mechanism in graphene nanoribbons. J. Comput. Theor. Nanosci. 9(12), 2190–2192 (2012)CrossRef Ghadiry, M., Manaf, A.B.A., Nadi, M., Rahmani, M., Ahmadi, M.T.: Theory of ionization mechanism in graphene nanoribbons. J. Comput. Theor. Nanosci. 9(12), 2190–2192 (2012)CrossRef
55.
Zurück zum Zitat Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Rahbarpour, S., Habibiyan, H., Varmazyari, V., Rahmani, K.: Investigating the mobility of trilayer graphene nanoribbon in nanoscale FETs. J. Electron. Mater. 46(10), 6188–6194 (2017)CrossRef Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Rahbarpour, S., Habibiyan, H., Varmazyari, V., Rahmani, K.: Investigating the mobility of trilayer graphene nanoribbon in nanoscale FETs. J. Electron. Mater. 46(10), 6188–6194 (2017)CrossRef
56.
Zurück zum Zitat Karimi, H., Yousof, R., Naghib, D., Ahmadi, M.T., Rahmani, M., Kiani, M.J., Ghadiry, M.H.: Semi analytical modeling of quantum capacitance of graphene-based ion sensitive FET. J. Comput. Theor. Nanosci. 11(3), 596–600 (2014)CrossRef Karimi, H., Yousof, R., Naghib, D., Ahmadi, M.T., Rahmani, M., Kiani, M.J., Ghadiry, M.H.: Semi analytical modeling of quantum capacitance of graphene-based ion sensitive FET. J. Comput. Theor. Nanosci. 11(3), 596–600 (2014)CrossRef
57.
Zurück zum Zitat Kiani, M.J., Ahmadi, M.T., Akbari, E., Rahmani, M., Karimi, H., Khairi, F.: Analytical modeling of bilayer graphene based biosensor. Biosens. Bioelectron. 4(1), 131 (2013) Kiani, M.J., Ahmadi, M.T., Akbari, E., Rahmani, M., Karimi, H., Khairi, F.: Analytical modeling of bilayer graphene based biosensor. Biosens. Bioelectron. 4(1), 131 (2013)
58.
Zurück zum Zitat Rahmani, M., Mousavi, S.M., Sadeghi, H.: Chapter 8: Trilayer graphene nanoribbon field effect transistor modeling. In: Ismail, R., Ahmadi, M.T., Anwar, S. (eds.) Advanced Nanoelectronics. Taylor and Francis, CRC Press, Boca Raton (2012) Rahmani, M., Mousavi, S.M., Sadeghi, H.: Chapter 8: Trilayer graphene nanoribbon field effect transistor modeling. In: Ismail, R., Ahmadi, M.T., Anwar, S. (eds.) Advanced Nanoelectronics. Taylor and Francis, CRC Press, Boca Raton (2012)
59.
Zurück zum Zitat Saeidmanesh, M., Rahmani, M., Karimi, H., Khaledian, M., Ismail, R.: Analytical model for threshold voltage of double gate bilayer graphene field effect transistors. Microelectron. Reliab. 54(1), 44–48 (2014)CrossRef Saeidmanesh, M., Rahmani, M., Karimi, H., Khaledian, M., Ismail, R.: Analytical model for threshold voltage of double gate bilayer graphene field effect transistors. Microelectron. Reliab. 54(1), 44–48 (2014)CrossRef
60.
Zurück zum Zitat Karimi, H., Yousof, R., Eshrati, M., Naghib, D., Rahmani, M., Ghadiry, M.H., Akbari, E., Ahmadi, M.T.: Current–voltage modeling of graphene-based DNA sensor. Neural Comput. Appl. 24(1), 85–89 (2014)CrossRef Karimi, H., Yousof, R., Eshrati, M., Naghib, D., Rahmani, M., Ghadiry, M.H., Akbari, E., Ahmadi, M.T.: Current–voltage modeling of graphene-based DNA sensor. Neural Comput. Appl. 24(1), 85–89 (2014)CrossRef
Metadaten
Titel
The effects of a Stone–Wales defect on the performance of a graphene-nanoribbon-based Schottky diode
Publikationsdatum
10.06.2019
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2019
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01361-z

Weitere Artikel der Ausgabe 3/2019

Journal of Computational Electronics 3/2019 Zur Ausgabe

Neuer Inhalt