Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

26.10.2021

The Effects of Chemical Vapor Aluminizing Process Time and Post-processing for Nickel Aluminide Coating on CMSX-4 Alloy

verfasst von: Ahmet Arda Inceyer, Gökhan Güven, Kaan Demiralay, Havva Kazdal Zeytin, Metin Usta

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a nickel aluminide coating was obtained on CMSX-4 via a chemical vapor aluminizing (CVA) technique. The CVA coating process was carried out for 4 and 6 hours at 1070°C to examine the effects of CVA process time on the properties of the nickel aluminide coating. Heat treatment processes were subsequently applied to nickel aluminide-coated samples for 2 hours at 1050 and 1100°C to examine the effects of heat treatment temperature on the coating. The characterization of coated samples was carried out via SEM, EDS, XRD, GDOES and Vickers hardness analyses. The results showed that the increment in CVA process time induced an increase in inter-diffusion zone thickness due to the increased Ni outward diffusion from the CMSX-4 substrate. The additive layer of the four-hour CVA coating is composed of the δ-Ni2Al3 phase due to the dominance of Al inward diffusion. The phase transformation from δ-Ni2Al3 to the desired β-NiAl was observed in four-hour CVA coating structure subsequent to the heat treatment processes. However, the additive layer of six-hour CVA coating consists of the β-NiAl phase both before and after the heat treatment processes. Heat treatment processes increase the thickness of the coatings because they provide increased Al inward and Ni outward diffusion. The results of the Vickers hardness tests demonstrated that the heat treatment processes cause a decrease in the hardness of the additive layer of the four-hour CVA coating from 754 to 578 HV for heat treatment at 1050°C, and to 522 HV for heat treatment at 1100°C due to phase transformation phenomena.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X.P. Tao, X.G. Wang, Y.Z. Zhou, K.J. Tan, J.J. Liang, Y.H. Yang, J.L. Liu, J.D. Liu, J.G. Li and X.F. Sun, Effect of Pt-Al Bond-Coat on the Tensile Deformation and Fracture Behaviors of a Second-Generation SX Ni-Based Superalloy at Elevated Temperatures, Surf. Coat. Technol, 2020, 389, p 125640.CrossRef X.P. Tao, X.G. Wang, Y.Z. Zhou, K.J. Tan, J.J. Liang, Y.H. Yang, J.L. Liu, J.D. Liu, J.G. Li and X.F. Sun, Effect of Pt-Al Bond-Coat on the Tensile Deformation and Fracture Behaviors of a Second-Generation SX Ni-Based Superalloy at Elevated Temperatures, Surf. Coat. Technol, 2020, 389, p 125640.CrossRef
2.
Zurück zum Zitat Z. Shang, X. Wei, D. Song, J. Zou, S. Liang, G. Liu, L. Nie and X. Gong, Microstructure and Mechanical Properties of a New Nickel-Based Single Crystal Superalloy, J. Mater. Res. Technol., 2020, 9(5), p 11641–11649.CrossRef Z. Shang, X. Wei, D. Song, J. Zou, S. Liang, G. Liu, L. Nie and X. Gong, Microstructure and Mechanical Properties of a New Nickel-Based Single Crystal Superalloy, J. Mater. Res. Technol., 2020, 9(5), p 11641–11649.CrossRef
3.
Zurück zum Zitat H. Yu, W. Xu and S. van der Zwaag, Microstructure and Dislocation Structure Evolution during Creep Life of Ni-Based Single Crystal Superalloys, J. Mater. Sci. Technol., 2020, 45, p 207–214.CrossRef H. Yu, W. Xu and S. van der Zwaag, Microstructure and Dislocation Structure Evolution during Creep Life of Ni-Based Single Crystal Superalloys, J. Mater. Sci. Technol., 2020, 45, p 207–214.CrossRef
4.
Zurück zum Zitat L. Cui, H. Su, J. Yu, J. Liu, T. Jin and X. Sun, Temperature Dependence of Tensile Properties and Deformation Behaviors of Nickel-Base Superalloy M951G, Mater. Sci. Eng. A, 2017, 696, p 323–330.CrossRef L. Cui, H. Su, J. Yu, J. Liu, T. Jin and X. Sun, Temperature Dependence of Tensile Properties and Deformation Behaviors of Nickel-Base Superalloy M951G, Mater. Sci. Eng. A, 2017, 696, p 323–330.CrossRef
5.
Zurück zum Zitat H. Xu, H. Guo and S. Gong, Thermal Barrier Coatings, in Developments in High-Temperature Corrosion and Protection of Materials, Elsevier, Hoboken, 2008, p 476–491CrossRef H. Xu, H. Guo and S. Gong, Thermal Barrier Coatings, in Developments in High-Temperature Corrosion and Protection of Materials, Elsevier, Hoboken, 2008, p 476–491CrossRef
6.
Zurück zum Zitat N.P. Padture, M. Gell and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280–284.CrossRef N.P. Padture, M. Gell and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280–284.CrossRef
7.
Zurück zum Zitat Q. Liu, S. Huang and A. He, Composite Ceramics Thermal Barrier Coatings of Yttria Stabilized Zirconia for Aero-Engines, J. Mater. Sci. Technol., 2019, 35(12), p 2814–2823.CrossRef Q. Liu, S. Huang and A. He, Composite Ceramics Thermal Barrier Coatings of Yttria Stabilized Zirconia for Aero-Engines, J. Mater. Sci. Technol., 2019, 35(12), p 2814–2823.CrossRef
8.
Zurück zum Zitat H. Zhong-Chao, B. Liu, W. Liang, C. Yu-Hang, W. Yan-Wei, M. Yu-Duo, S. Wen-Wei and Y. Yong, Research Progress of Failure Mechanism of Thermal Barrier Coatings at High Temperature via Finite Element Method, Coatings, 2020, 10(8), p 1–25. H. Zhong-Chao, B. Liu, W. Liang, C. Yu-Hang, W. Yan-Wei, M. Yu-Duo, S. Wen-Wei and Y. Yong, Research Progress of Failure Mechanism of Thermal Barrier Coatings at High Temperature via Finite Element Method, Coatings, 2020, 10(8), p 1–25.
9.
Zurück zum Zitat Y.M. Wang-Koh, Understanding the Yield Behaviour of L12-Ordered Alloys, Mater. Sci. Technol., 2017, 33(8), p 934–943.CrossRef Y.M. Wang-Koh, Understanding the Yield Behaviour of L12-Ordered Alloys, Mater. Sci. Technol., 2017, 33(8), p 934–943.CrossRef
10.
Zurück zum Zitat H. Song, J.M. Lee, J. Yun, S. Park, Y. Kim, K.S. Kum, Y.Z. Lee and C.S. Seok, Oxide Layer Rumpling Control Technology for High Efficiency of Eco-Friendly Combined-Cycle Power Generation System, Int. J. Precis Eng. Manuf - Green Technol., 2020, 7(1), p 185–193.CrossRef H. Song, J.M. Lee, J. Yun, S. Park, Y. Kim, K.S. Kum, Y.Z. Lee and C.S. Seok, Oxide Layer Rumpling Control Technology for High Efficiency of Eco-Friendly Combined-Cycle Power Generation System, Int. J. Precis Eng. Manuf - Green Technol., 2020, 7(1), p 185–193.CrossRef
11.
Zurück zum Zitat Z. Yu, D.D. Hass and H.N.G. Wadley, NiAl Bond Coats Made by a Directed Vapor Deposition Approach, Mater. Sci. Eng. A, 2005, 394(1–2), p 43–52.CrossRef Z. Yu, D.D. Hass and H.N.G. Wadley, NiAl Bond Coats Made by a Directed Vapor Deposition Approach, Mater. Sci. Eng. A, 2005, 394(1–2), p 43–52.CrossRef
12.
Zurück zum Zitat T. Czeppe and S. Wierzbinski, Structure and Mechanical Properties of NiAl and Ni3Al-Based Alloys, Int. J. Mech. Sci., 2000, 42(8), p 1499–1518.CrossRef T. Czeppe and S. Wierzbinski, Structure and Mechanical Properties of NiAl and Ni3Al-Based Alloys, Int. J. Mech. Sci., 2000, 42(8), p 1499–1518.CrossRef
13.
Zurück zum Zitat N.F. Kadir, A. Manap, M. Satgunam and N.M. Afandi, Review on Nickel Aluminide Based Bond Coat Properties and Oxidation Performance for Thermal Barrier Coating (TBC) Application, Int. J. Eng. Technol., 2018, 7(4), p 624–628.CrossRef N.F. Kadir, A. Manap, M. Satgunam and N.M. Afandi, Review on Nickel Aluminide Based Bond Coat Properties and Oxidation Performance for Thermal Barrier Coating (TBC) Application, Int. J. Eng. Technol., 2018, 7(4), p 624–628.CrossRef
14.
Zurück zum Zitat S. Bose, High Temperature Coatings, 1st ed. Elsevier, Amsterdam, 2007. S. Bose, High Temperature Coatings, 1st ed. Elsevier, Amsterdam, 2007.
15.
Zurück zum Zitat B. Dubiel, T. Moskalewicz, L. Swadzba and A. Czyrska-Filemonowicz, Analytical TEM and SEM Characterisation of Aluminide Coatings on Nickel Based Superalloy CMSX-4, Surf. Eng., 2008, 24(5), p 327–331.CrossRef B. Dubiel, T. Moskalewicz, L. Swadzba and A. Czyrska-Filemonowicz, Analytical TEM and SEM Characterisation of Aluminide Coatings on Nickel Based Superalloy CMSX-4, Surf. Eng., 2008, 24(5), p 327–331.CrossRef
16.
Zurück zum Zitat A.S. Wilson, Formation and Effect of Topologically Close-Packed Phases in Nickel-Base Superalloys, Mater. Sci. Technol., 2017, 33(9), p 1108–1118.CrossRef A.S. Wilson, Formation and Effect of Topologically Close-Packed Phases in Nickel-Base Superalloys, Mater. Sci. Technol., 2017, 33(9), p 1108–1118.CrossRef
17.
Zurück zum Zitat H. Strakov, V. Papageorgiou, R. Bonetti, V. Lieberman and A. Scott, Advanced Chemical Vapor Aluminizing Technology: Co-Deposition Process and Doped Aluminized Coatings, Proc. ASME Turbo Expo, 2012, 5, p 201–207. H. Strakov, V. Papageorgiou, R. Bonetti, V. Lieberman and A. Scott, Advanced Chemical Vapor Aluminizing Technology: Co-Deposition Process and Doped Aluminized Coatings, Proc. ASME Turbo Expo, 2012, 5, p 201–207.
18.
Zurück zum Zitat M. Farvizi, Cyclic Oxidation Behavior of Uncoated and Aluminum-Rich Nickel Aluminide Coated Rene-80 Superalloy, Adv. Ceram. Prog., 2019, 4(3–4), p 1–7. M. Farvizi, Cyclic Oxidation Behavior of Uncoated and Aluminum-Rich Nickel Aluminide Coated Rene-80 Superalloy, Adv. Ceram. Prog., 2019, 4(3–4), p 1–7.
19.
Zurück zum Zitat M. Salehi Doolabi, B. Ghasemi, S.K. Sadrnezhaad, A. Feizabadi, A. HabibollahZadeh, D. Salehi Doolabi and M. AsadiZarch, Comparison of Isothermal with Cyclic Oxidation Behavior of “Cr-Aluminide” Coating on Inconel 738LC at 900 °C, Oxid. Met., 2017, 87(1–2), p 57–74.CrossRef M. Salehi Doolabi, B. Ghasemi, S.K. Sadrnezhaad, A. Feizabadi, A. HabibollahZadeh, D. Salehi Doolabi and M. AsadiZarch, Comparison of Isothermal with Cyclic Oxidation Behavior of “Cr-Aluminide” Coating on Inconel 738LC at 900 °C, Oxid. Met., 2017, 87(1–2), p 57–74.CrossRef
20.
Zurück zum Zitat D.K. Das, V. Singh and S.V. Joshi, Evolution of Aluminide Coating Microstructure on Nickel-Base Cast Superalloy CM-247 in a Single-Step High-Activity Aluminizing Process, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1998, 29(8), p 2173–2188.CrossRef D.K. Das, V. Singh and S.V. Joshi, Evolution of Aluminide Coating Microstructure on Nickel-Base Cast Superalloy CM-247 in a Single-Step High-Activity Aluminizing Process, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1998, 29(8), p 2173–2188.CrossRef
21.
Zurück zum Zitat K.A. Marino and E.A. Carter, First-Principles Characterization of Ni Diffusion Kinetics in β-NiAl, Phys Rev B - Condens Matter Mater Phys, 2008, 78(18), p 1–11.CrossRef K.A. Marino and E.A. Carter, First-Principles Characterization of Ni Diffusion Kinetics in β-NiAl, Phys Rev B - Condens Matter Mater Phys, 2008, 78(18), p 1–11.CrossRef
22.
Zurück zum Zitat A. Squillace, R. Bonetti, N.J. Archer and J.A. Yeatman, The Control of the Composition and Structure of Aluminide Layers Formed by Vapour Aluminising, Surf. Coat. Technol., 1999, 120–121, p 118–123.CrossRef A. Squillace, R. Bonetti, N.J. Archer and J.A. Yeatman, The Control of the Composition and Structure of Aluminide Layers Formed by Vapour Aluminising, Surf. Coat. Technol., 1999, 120–121, p 118–123.CrossRef
23.
Zurück zum Zitat Z. Xu, Z. Wang, J. Niu, L. He, R. Mu and K. Wang, Effects of Deposition Temperature on the Kinetics Growth and Protective Properties of Aluminide Coatings, J. Alloys Compd., 2015, 632, p 238–245.CrossRef Z. Xu, Z. Wang, J. Niu, L. He, R. Mu and K. Wang, Effects of Deposition Temperature on the Kinetics Growth and Protective Properties of Aluminide Coatings, J. Alloys Compd., 2015, 632, p 238–245.CrossRef
24.
Zurück zum Zitat H. Rafiee, S. Rastegari, H. Arabi and M. Mojaddami, Effects of Temperature and Al-Concentration on Formation Mechanism of an Aluminide Coating Applied on Super Alloy In738lc through a Single-Step High Activity Gas Diffusion Process, Iran. J. Mater. Sci. Eng., 2010, 7(4), p 42–49. H. Rafiee, S. Rastegari, H. Arabi and M. Mojaddami, Effects of Temperature and Al-Concentration on Formation Mechanism of an Aluminide Coating Applied on Super Alloy In738lc through a Single-Step High Activity Gas Diffusion Process, Iran. J. Mater. Sci. Eng., 2010, 7(4), p 42–49.
25.
Zurück zum Zitat H. Rafiee, H. Arabi and S. Rastegari, Effects of Temperature and Al-Concentration on Formation Mechanism of an Aluminide Coating Applied on Superalloy IN738LC through a Single Step Low Activity Gas Diffusion Process, J. Alloys Compd., 2010, 505(1), p 206–212.CrossRef H. Rafiee, H. Arabi and S. Rastegari, Effects of Temperature and Al-Concentration on Formation Mechanism of an Aluminide Coating Applied on Superalloy IN738LC through a Single Step Low Activity Gas Diffusion Process, J. Alloys Compd., 2010, 505(1), p 206–212.CrossRef
26.
Zurück zum Zitat A. Eslami, H. Arabi and S. Rastegari, Gas Phase Aluminizing of a Nickel Base Superalloy by a Single Step HTHA Aluminizing Process, Can. Metall. Q., 2009, 48(1), p 91–98.CrossRef A. Eslami, H. Arabi and S. Rastegari, Gas Phase Aluminizing of a Nickel Base Superalloy by a Single Step HTHA Aluminizing Process, Can. Metall. Q., 2009, 48(1), p 91–98.CrossRef
27.
Zurück zum Zitat F. Bozza, G. Bolelli, C. Giolli, A. Giorgetti, L. Lusvarghi, P. Sassatelli, A. Scrivani, A. Candeli and M. Thoma, Diffusion Mechanisms and Microstructure Development in Pack Aluminizing of Ni-Based Alloys, Surf. Coat. Technol., 2014, 239, p 147–159.CrossRef F. Bozza, G. Bolelli, C. Giolli, A. Giorgetti, L. Lusvarghi, P. Sassatelli, A. Scrivani, A. Candeli and M. Thoma, Diffusion Mechanisms and Microstructure Development in Pack Aluminizing of Ni-Based Alloys, Surf. Coat. Technol., 2014, 239, p 147–159.CrossRef
28.
Zurück zum Zitat M. Zielińska, J. Sieniawski, M. Yavorska and M. Motyka, Influence of Chemical Composition of Nickel Based Superalloy on the Formation of Aluminide Coatings, Arch. Metall. Mater., 2011, 56(1), p 193–197.CrossRef M. Zielińska, J. Sieniawski, M. Yavorska and M. Motyka, Influence of Chemical Composition of Nickel Based Superalloy on the Formation of Aluminide Coatings, Arch. Metall. Mater., 2011, 56(1), p 193–197.CrossRef
29.
Zurück zum Zitat A. Nowotnik, M. Goral, M. Pytel and K. Dychton, Influence of Coatings Deposition Parameters on Microstructure of Aluminide Coatings Deposited by CVD Method on Ni-Superalloys, Solid State Phenom., 2013, 197, p 95–100.CrossRef A. Nowotnik, M. Goral, M. Pytel and K. Dychton, Influence of Coatings Deposition Parameters on Microstructure of Aluminide Coatings Deposited by CVD Method on Ni-Superalloys, Solid State Phenom., 2013, 197, p 95–100.CrossRef
30.
Zurück zum Zitat M. Yavorska and J. Sieniawski, Thermal Stability of Microstructure of Aluminide Layer Deposited by CVD Method on CMSX 4 Nickel Base Superalloy, Mater. Sci. Forum, 2011, 674, p 89–96.CrossRef M. Yavorska and J. Sieniawski, Thermal Stability of Microstructure of Aluminide Layer Deposited by CVD Method on CMSX 4 Nickel Base Superalloy, Mater. Sci. Forum, 2011, 674, p 89–96.CrossRef
31.
Zurück zum Zitat X. Gong, H. Peng, Y. Ma, H. Guo and S. Gong, Microstructure Evolution of an EB-PVD NiAl Coating and Its Underlying Single Crystal Superalloy Substrate, J. Alloys Compd., 2016, 672, p 36–44.CrossRef X. Gong, H. Peng, Y. Ma, H. Guo and S. Gong, Microstructure Evolution of an EB-PVD NiAl Coating and Its Underlying Single Crystal Superalloy Substrate, J. Alloys Compd., 2016, 672, p 36–44.CrossRef
32.
Zurück zum Zitat A. Bradshaw, N.J. Simms and J.R. Nicholls, Development of Hot Corrosion Resistant Coatings for Gas Turbines Burning Biomass and Waste Derived Fuel Gases, Surf. Coat. Technol., 2013, 216, p 8–22.CrossRef A. Bradshaw, N.J. Simms and J.R. Nicholls, Development of Hot Corrosion Resistant Coatings for Gas Turbines Burning Biomass and Waste Derived Fuel Gases, Surf. Coat. Technol., 2013, 216, p 8–22.CrossRef
33.
Zurück zum Zitat P. Kiruthika, S.K. Makineni, C. Srivastava, K. Chattopadhyay and A. Paul, Growth Mechanism of the Interdiffusion Zone between Platinum Modified Bond Coats and Single Crystal Superalloys, Acta Mater., 2016, 105, p 438–448.CrossRef P. Kiruthika, S.K. Makineni, C. Srivastava, K. Chattopadhyay and A. Paul, Growth Mechanism of the Interdiffusion Zone between Platinum Modified Bond Coats and Single Crystal Superalloys, Acta Mater., 2016, 105, p 438–448.CrossRef
34.
Zurück zum Zitat A. Paul (2017) Diffusion-Controlled Growth and Microstructural Evolution of Aluminide Coatings, arXiv, 13: 167–195. A. Paul (2017) Diffusion-Controlled Growth and Microstructural Evolution of Aluminide Coatings, arXiv, 13: 167–195.
35.
Zurück zum Zitat E. Pauletti and A.S.C.M. d’oliveira, Study on the Mechanisms of Formation of Aluminized Diffusion Coatings on a Ni-Base Superalloy Using Different Pack Aluminization Procedures, J Vac Sci Technol A, 2018, 36(4), p 041504.CrossRef E. Pauletti and A.S.C.M. d’oliveira, Study on the Mechanisms of Formation of Aluminized Diffusion Coatings on a Ni-Base Superalloy Using Different Pack Aluminization Procedures, J Vac Sci Technol A, 2018, 36(4), p 041504.CrossRef
36.
Zurück zum Zitat M. Mojaddami, S. Rastegari, H. Arabi and H. Rafiee, Effect of Heat Treatment on Coating Microstructure Applied by High Activity Diffusion Process on IN738LC, Surf. Eng., 2012, 28(10), p 772–777.CrossRef M. Mojaddami, S. Rastegari, H. Arabi and H. Rafiee, Effect of Heat Treatment on Coating Microstructure Applied by High Activity Diffusion Process on IN738LC, Surf. Eng., 2012, 28(10), p 772–777.CrossRef
37.
Zurück zum Zitat J.M. Brossard, B. Panicaud, J. Balmain and G. Bonnet, Modelling of Aluminized Coating Growth on Nickel, Acta Mater., 2007, 55(19), p 6586–6595.CrossRef J.M. Brossard, B. Panicaud, J. Balmain and G. Bonnet, Modelling of Aluminized Coating Growth on Nickel, Acta Mater., 2007, 55(19), p 6586–6595.CrossRef
38.
Zurück zum Zitat C.M.F. Rae, M.S. Hook and R.C. Reed, The Effect of TCP Morphology on the Development of Aluminide Coated Superalloys, Mater. Sci. Eng. A, 2005, 396(1–2), p 231–239.CrossRef C.M.F. Rae, M.S. Hook and R.C. Reed, The Effect of TCP Morphology on the Development of Aluminide Coated Superalloys, Mater. Sci. Eng. A, 2005, 396(1–2), p 231–239.CrossRef
39.
Zurück zum Zitat G.W. Goward and D.H. Boone, Mechanisms of Formation of Diffusion Aluminide Coatings on Nickel-Base Superalloys, Oxid. Met., 1971, 3(5), p 475–495.CrossRef G.W. Goward and D.H. Boone, Mechanisms of Formation of Diffusion Aluminide Coatings on Nickel-Base Superalloys, Oxid. Met., 1971, 3(5), p 475–495.CrossRef
40.
Zurück zum Zitat T. Sugui, W. Minggang, L. Tang, Q. Benjiang and X. Jun, Influence of TCP Phase and Its Morphology on Creep Properties of Single Crystal Nickel-Based Superalloys, Mater. Sci. Eng. A, 2010, 527(21–22), p 5444–5451.CrossRef T. Sugui, W. Minggang, L. Tang, Q. Benjiang and X. Jun, Influence of TCP Phase and Its Morphology on Creep Properties of Single Crystal Nickel-Based Superalloys, Mater. Sci. Eng. A, 2010, 527(21–22), p 5444–5451.CrossRef
Metadaten
Titel
The Effects of Chemical Vapor Aluminizing Process Time and Post-processing for Nickel Aluminide Coating on CMSX-4 Alloy
verfasst von
Ahmet Arda Inceyer
Gökhan Güven
Kaan Demiralay
Havva Kazdal Zeytin
Metin Usta
Publikationsdatum
26.10.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06323-w

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.