Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

18.10.2021

Technology Development for Thick Section of Aerospace-Grade MDN 250 Weldment with Higher Weld Strength and Toughness by Suppressing Reverted Austenite Phase

verfasst von: Bibin Jose, Manikandan Manoharan, Arivazhagan Natarajan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Maraging steels are precipitation hardened steels with high-strength and excellent toughness. Maraging steels being the key player in the strategic sector, demands welding of thick sections up to 12 mm for critical applications. They are readily weldable in the soft solution-annealed condition and further strengthened by post-weld heat-treatment (PWHT). However, welding of thick sections, on the other hand, necessitates a longer welding time, more number of passes and a higher heat input. This paper elucidates the influence of different PWHTs on the metallurgical and mechanical behavior of 12-mm-thick plates of MDN 250 grade maraging steel by using multi-pass gas metal-arc welding (GMAW). The different PWHTs adopted for the study include; Direct Aging (DA), Solutionizing + Aging (SA) and Homogenizing + Solutionizing + Aging (HSA). The microstructures of the fusion zone (FZ) with DA and SA condition reveal the presence of reverted austenite (RA) along the cell boundaries. However, in the weldment with HSA treatment was free from RA. Metallographic analysis of the as-welded FZ showed nickel, molybdenum and titanium segregation along the cell boundaries. This resulted in the formation of RA on subsequent aging. The SA treatment was not effective in complete elimination of reversion. The HSA treatment, on the other hand, had completely eliminated both elemental segregation and reversion. The welded joint with HSA treatment had an ultimate tensile strength (UTS) of 1582 MPa and a fracture toughness of 92.9 MPa√m, respectively. HSA treatment also shows a remarkable improvement in fracture toughness compared to other PWHTs. The present study underscores the fact that multi-pass GMAW with HSA treatment provides optimal mechanical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.F. Decker, C.J. Novak and T.W. Landig, Developments, and Projected Trends in Maraging Steels, JOM, 1967, 19, p 60–66. CrossRef R.F. Decker, C.J. Novak and T.W. Landig, Developments, and Projected Trends in Maraging Steels, JOM, 1967, 19, p 60–66. CrossRef
2.
Zurück zum Zitat W. Sha and Z. Gwa, Introduction to Maraging Steels, Maraging Steels, 1st, Ed., Woodhead Publishing, 2009, p 1–16. W. Sha and Z. Gwa, Introduction to Maraging Steels, Maraging Steels, 1st, Ed., Woodhead Publishing, 2009, p 1–16.
3.
Zurück zum Zitat M.N. Rao, Progress in Understanding the Metallurgy of 18 % Nickel Maraging Steels, Int. J. Mater. Res., 2006, 97(11), p 1594–1607. CrossRef M.N. Rao, Progress in Understanding the Metallurgy of 18 % Nickel Maraging Steels, Int. J. Mater. Res., 2006, 97(11), p 1594–1607. CrossRef
4.
Zurück zum Zitat L. Subashini, K.V.P. Prabhakar, S. Ghosh, and G. Padmanabham, Comparison of Laser-MIG Hybrid and Autogenous Laser Welding of M250 Maraging Steel Thick Sections — Understanding the Role of Filler Wire Addition, Int. J. Adv. Manuf. Technol., The International Journal of Advanced Manufacturing Technology, 2020, (3–4). L. Subashini, K.V.P. Prabhakar, S. Ghosh, and G. Padmanabham, Comparison of Laser-MIG Hybrid and Autogenous Laser Welding of M250 Maraging Steel Thick Sections — Understanding the Role of Filler Wire Addition, Int. J. Adv. Manuf. Technol., The International Journal of Advanced Manufacturing Technology, 2020, (3–4).
5.
Zurück zum Zitat A. O’Brien and C. Guzman, High-Alloy Steels, AWS Welding handbook, Mater. Appl. Part, 2011, 1, p 95–135. A. O’Brien and C. Guzman, High-Alloy Steels, AWS Welding handbook, Mater. Appl. Part, 2011, 1, p 95–135.
6.
Zurück zum Zitat Z. Hu, D. Mo, C. Wang, G. He and C. Chen, Different Behavior in Electron Beam Welding of 18 Ni Co-Free Maraging Steels, J. Mater. Eng. Perform., 2008, 17, p 767–771. CrossRef Z. Hu, D. Mo, C. Wang, G. He and C. Chen, Different Behavior in Electron Beam Welding of 18 Ni Co-Free Maraging Steels, J. Mater. Eng. Perform., 2008, 17, p 767–771. CrossRef
7.
Zurück zum Zitat D. feng MO, Z. fei HU, S. juan CHEN, C. xu WANG, and G. qiu HE, (2009) Microstructure and Hardness of T250 Maraging Steel in Heat Affected Zone, J. Iron Steel Res. Int., Central Iron and Steel Research Institute, 16(1): 87–91. D. feng MO, Z. fei HU, S. juan CHEN, C. xu WANG, and G. qiu HE, (2009) Microstructure and Hardness of T250 Maraging Steel in Heat Affected Zone, J. Iron Steel Res. Int., Central Iron and Steel Research Institute, 16(1): 87–91.
8.
Zurück zum Zitat Y. Lee, I. Lee, S. Wu, M. Kung and C. Chou, Effect of Post-Weld Heat Treatments on Microstructure and Mechanical Properties of Electron Beam Welded Flow Formed Maraging Steel Weldment, Sci. Technol. Weld. Join., 2007, 12(3), p 266–274. CrossRef Y. Lee, I. Lee, S. Wu, M. Kung and C. Chou, Effect of Post-Weld Heat Treatments on Microstructure and Mechanical Properties of Electron Beam Welded Flow Formed Maraging Steel Weldment, Sci. Technol. Weld. Join., 2007, 12(3), p 266–274. CrossRef
9.
Zurück zum Zitat S.D. Meshram, G. Madhusudhan Reddy, and S. Pandey, Friction Stir Welding of Maraging Steel (Grade-250), Mater. Des., Elsevier Ltd, 2013, 49, p 58–64. S.D. Meshram, G. Madhusudhan Reddy, and S. Pandey, Friction Stir Welding of Maraging Steel (Grade-250), Mater. Des., Elsevier Ltd, 2013, 49, p 58–64.
10.
Zurück zum Zitat S.D. Meshram, A.G. Paradkar, G.M. Reddy, and S. Pandey, Friction Stir Welding: An Alternative to Fusion Welding for Better Stress Corrosion Cracking Resistance of Maraging Steel, J. Manuf. Process., The Society of Manufacturing Engineers, 2017, 25, p 94–103. S.D. Meshram, A.G. Paradkar, G.M. Reddy, and S. Pandey, Friction Stir Welding: An Alternative to Fusion Welding for Better Stress Corrosion Cracking Resistance of Maraging Steel, J. Manuf. Process., The Society of Manufacturing Engineers, 2017, 25, p 94–103.
11.
Zurück zum Zitat S.D. Meshram, A.G. Paradkar, G.M. Reddy, and S. Pandey, “Stress Corrosion Cracking Behaviour of Gas Tungsten Arc and Friction Stir Maraging Steel Welds,” Materials Today: Proceedings, Elsevier Ltd, 2018, p 26968–26973. S.D. Meshram, A.G. Paradkar, G.M. Reddy, and S. Pandey, “Stress Corrosion Cracking Behaviour of Gas Tungsten Arc and Friction Stir Maraging Steel Welds,” Materials Today: Proceedings, Elsevier Ltd, 2018, p 26968–26973.
12.
Zurück zum Zitat G.M. Reddy, V. V Rao, and A.V.S. Raju, “The Effect of Post-Weld Heat Treatments on the Microstructure and Mechanical Properties of Maraging Steel Laser Weldments,” Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications, 2009, p 149–159. G.M. Reddy, V. V Rao, and A.V.S. Raju, “The Effect of Post-Weld Heat Treatments on the Microstructure and Mechanical Properties of Maraging Steel Laser Weldments,” Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications, 2009, p 149–159.
13.
Zurück zum Zitat R. Karthikeyan and M. Saravanan, Effect of Heat Input and Post-Weld Heat Treatment on the Mechanical and Laser-Welded Maraging Steel Joints, Surf. Rev. Lett., 2017, 24(7), p 1–13. CrossRef R. Karthikeyan and M. Saravanan, Effect of Heat Input and Post-Weld Heat Treatment on the Mechanical and Laser-Welded Maraging Steel Joints, Surf. Rev. Lett., 2017, 24(7), p 1–13. CrossRef
14.
Zurück zum Zitat K. Li, J. Shan, C. Wang, and Z. Tian, Influence of Aging Temperature on Strength and Toughness of Laser-Welded T-250 Maraging Steel Joint, Mater. Sci. Eng. A, Elsevier, 2016, 669, p 58–65. K. Li, J. Shan, C. Wang, and Z. Tian, Influence of Aging Temperature on Strength and Toughness of Laser-Welded T-250 Maraging Steel Joint, Mater. Sci. Eng. A, Elsevier, 2016, 669, p 58–65.
15.
Zurück zum Zitat R. Gupta, R. Reddy and M.K. Mukherjee, Key-Hole Plasma Arc Welding of 8 Mm Thick Maraging Steel – A Comparison with Multi-Pass GTAW, Weld. World, 2012, 56, p 69–75. CrossRef R. Gupta, R. Reddy and M.K. Mukherjee, Key-Hole Plasma Arc Welding of 8 Mm Thick Maraging Steel – A Comparison with Multi-Pass GTAW, Weld. World, 2012, 56, p 69–75. CrossRef
16.
Zurück zum Zitat L. Subashini, K.V.P. Prabhakar, R.C. Gundakaram, and S. Ghosh, Single Pass Laser-Arc Hybrid Welding of Maraging Steel Thick Sections Single Pass Laser-Arc Hybrid Welding of Maraging Steel Thick Sections, Mater. Manuf. Process., Taylor & Francis, 2016, p 2186–2198. L. Subashini, K.V.P. Prabhakar, R.C. Gundakaram, and S. Ghosh, Single Pass Laser-Arc Hybrid Welding of Maraging Steel Thick Sections Single Pass Laser-Arc Hybrid Welding of Maraging Steel Thick Sections, Mater. Manuf. Process., Taylor & Francis, 2016, p 2186–2198.
17.
Zurück zum Zitat F.H. Lang and N. Kenyon, “Welding of Maraging Steels,” Welding Research Council, (New York), Welding Research Council, 1971. F.H. Lang and N. Kenyon, “Welding of Maraging Steels,” Welding Research Council, (New York), Welding Research Council, 1971.
18.
Zurück zum Zitat B. Rohit and N.R. Muktinutalapati, Austenite Reversion in 18% Ni Maraging Steel and Its Weldments, Mater. Sci. Technol., 2018, 34(3), p 253–260. CrossRef B. Rohit and N.R. Muktinutalapati, Austenite Reversion in 18% Ni Maraging Steel and Its Weldments, Mater. Sci. Technol., 2018, 34(3), p 253–260. CrossRef
19.
Zurück zum Zitat L. Fanton, A.J. Abdalla and S. Fernandes, Heat Treatment and Yb- Fiber Laser Welding of a Maraging Steel, Weld. Res., 2014, 93, p 362–368. L. Fanton, A.J. Abdalla and S. Fernandes, Heat Treatment and Yb- Fiber Laser Welding of a Maraging Steel, Weld. Res., 2014, 93, p 362–368.
20.
Zurück zum Zitat C.R. Shamantha, R. Narayanan, K.J.L. Iyer, V.M. Radhakrishnan, S.K. Seshadri, S. Sundararajan and S. Sundaresan, Microstructural Changes during Welding and Subsequent Heat Treatment of 18Ni (250-Grade) Maraging Steel, Mater. Sci. Eng. A, 2000, 287(1), p 43–51. CrossRef C.R. Shamantha, R. Narayanan, K.J.L. Iyer, V.M. Radhakrishnan, S.K. Seshadri, S. Sundararajan and S. Sundaresan, Microstructural Changes during Welding and Subsequent Heat Treatment of 18Ni (250-Grade) Maraging Steel, Mater. Sci. Eng. A, 2000, 287(1), p 43–51. CrossRef
21.
Zurück zum Zitat G. Madhusudhan Reddy and K. Srinivasa Rao, Microstructure and Corrosion Behaviour of Gas Tungsten Arc Welds of Maraging Steel, Def. Technol., Elsevier Ltd, 2015, 11(1), p 48–55. G. Madhusudhan Reddy and K. Srinivasa Rao, Microstructure and Corrosion Behaviour of Gas Tungsten Arc Welds of Maraging Steel, Def. Technol., Elsevier Ltd, 2015, 11(1), p 48–55.
22.
Zurück zum Zitat V. Venkateswara Rao, G. Madhusudhan Reddy, and A. V. Sitarama Raju, Influence of Post-Weld Heat Treatments on Microstructure and Mechanical Properties of Gas Tungsten Arc Maraging Steel Weldments, Mater. Sci. Technol., 2010, 26(12), p 1459–1468. V. Venkateswara Rao, G. Madhusudhan Reddy, and A. V. Sitarama Raju, Influence of Post-Weld Heat Treatments on Microstructure and Mechanical Properties of Gas Tungsten Arc Maraging Steel Weldments, Mater. Sci. Technol., 2010, 26(12), p 1459–1468.
23.
Zurück zum Zitat K. Li, J. Shan, C. Wang, and Z. Tian, Effect of Post-Weld Heat Treatments on Strength and Toughness Behavior of T-250 Maraging Steel Welded by Laser Beam, Mater. Sci. Eng. A, Elsevier, 2016, 663, p 157–165. K. Li, J. Shan, C. Wang, and Z. Tian, Effect of Post-Weld Heat Treatments on Strength and Toughness Behavior of T-250 Maraging Steel Welded by Laser Beam, Mater. Sci. Eng. A, Elsevier, 2016, 663, p 157–165.
24.
Zurück zum Zitat V. Rajkumar and N. Arivazhagan, Role of Pulsed Current on Metallurgical and Mechanical Properties of Dissimilar Metal Gas Tungsten Arc Welding of Maraging Steel to Low Alloy Steel, J. Mater., Elsevier Ltd, 2014, 63, p 69–82. V. Rajkumar and N. Arivazhagan, Role of Pulsed Current on Metallurgical and Mechanical Properties of Dissimilar Metal Gas Tungsten Arc Welding of Maraging Steel to Low Alloy Steel, J. Mater., Elsevier Ltd, 2014, 63, p 69–82.
25.
Zurück zum Zitat S. Kou, “Welding Metallurgy,” JOHN WILEY & SONS, 2003. S. Kou, “Welding Metallurgy,” JOHN WILEY & SONS, 2003.
26.
Zurück zum Zitat F. Tariq, R.A. Baloch, B. Ahmed and N. Naz, Investigation into Microstructures of Maraging Steel 250 Weldments and Effect of Post-Weld Heat Treatments, J. Mater. Eng. Perform., 2010, 19(2), p 264–273. CrossRef F. Tariq, R.A. Baloch, B. Ahmed and N. Naz, Investigation into Microstructures of Maraging Steel 250 Weldments and Effect of Post-Weld Heat Treatments, J. Mater. Eng. Perform., 2010, 19(2), p 264–273. CrossRef
27.
Zurück zum Zitat M. Sathishkumar, M. Manikandan, and N. Arivazhagan, Prospects of Pulsed Current Arc Welding on Aerospace Grade Hastelloy X, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2021. M. Sathishkumar, M. Manikandan, and N. Arivazhagan, Prospects of Pulsed Current Arc Welding on Aerospace Grade Hastelloy X, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2021.
28.
Zurück zum Zitat K. Li, L. Wei, B. An, B. Yu and R.D.K. Misra, Aging Phenomenon in Low Lattice-Misfit Cobalt-Free Maraging Steel: Microstructural Evolution and Strengthening Behavior, Mater. Sci. Eng. A, 2019, 2019(739), p 445–454. CrossRef K. Li, L. Wei, B. An, B. Yu and R.D.K. Misra, Aging Phenomenon in Low Lattice-Misfit Cobalt-Free Maraging Steel: Microstructural Evolution and Strengthening Behavior, Mater. Sci. Eng. A, 2019, 2019(739), p 445–454. CrossRef
29.
Zurück zum Zitat S.I. Wright, M.M. Nowell and D.P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microsc. Microanal., 2011, 17(3), p 316–329. CrossRef S.I. Wright, M.M. Nowell and D.P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microsc. Microanal., 2011, 17(3), p 316–329. CrossRef
30.
Zurück zum Zitat ASTM E8 / E8M-16ae1, “Standard Test Methods for Tension Testing of Metallic Materials,” (West Conshohocken, PA), 2016. ASTM E8 / E8M-16ae1, “Standard Test Methods for Tension Testing of Metallic Materials,” (West Conshohocken, PA), 2016.
31.
Zurück zum Zitat ASTM E399-90, “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,” (West Conshohocken, PA), 1997. ASTM E399-90, “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,” (West Conshohocken, PA), 1997.
Metadaten
Titel
Technology Development for Thick Section of Aerospace-Grade MDN 250 Weldment with Higher Weld Strength and Toughness by Suppressing Reverted Austenite Phase
verfasst von
Bibin Jose
Manikandan Manoharan
Arivazhagan Natarajan
Publikationsdatum
18.10.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06330-x

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.