Skip to main content
Erschienen in: Microsystem Technologies 12/2012

01.12.2012 | Technical Paper

The FEM based liquid transfer model in gravure offset printing using phase field method

verfasst von: Sang-Shin Park, Youngwon Jeon, Migyung Cho, Cheolho Bai, Dong-yeon Lee, Jaesool Shim

Erschienen in: Microsystem Technologies | Ausgabe 12/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The velocity control of a roller is crucial in gravure offset printing for determining the quality of the printed images such as width and thickness of an electric circuit. The velocity control also affects mass printability, especially when using micro-scale liquid of high conductivity ink. In this work, a liquid transfer model for gravure offset printing is developed using the phase field method to investigate interfacial dynamics. As a numerical scheme, the finite element method is used for discretization of the partial differential equation. The interfacial layer governed by the phase field variable is embodied by the Cahn–Hilliard equation for a convection–diffusion problem. The numerical results are compared with those from the literatures for their validation. The results were found to be in good agreement with both analytical and experimental results in the literatures. After the validation, the effects of several key factors in gravure offset printing, such as velocity, gravity, surface tension and viscosity on liquid transfer are studied with respect to the contact angle of the upper plate. The ranges of the velocity and contact angle are varied from 0.01 to 0.25 m/s and from 30° to 70°, respectively. Also, the values of the surface tension and viscosity are changed from 0.5 to 1.5 N/m and from 0.05 to 0.15 N s/m2, respectively. The simulation result showed that at α = β = 60° regardless of gravity, the liquid transfer rate (R %) is increased as the velocity of the upper plate is increased at velocities below 0.01 m/s for liquid with low density, whereas the liquid transfer rate is decreased as the velocity is increased for liquid with high density. Also, the liquid transfer rate is increased as the surface tension is increased until the contact angle (α ≤ β = 60°) approached 60°. Whereas the liquid transfer rate is decreased as the surface tension is increased until the contact angle (α ≤ β = 60°) is increased to 60°.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed DH, Sung HJ, Kim D (2011) Simulation of non-Newtonian ink transfer between two separating platesfor gravure-offset printing. Int J Heat Fluid Flow 32:298–307CrossRef Ahmed DH, Sung HJ, Kim D (2011) Simulation of non-Newtonian ink transfer between two separating platesfor gravure-offset printing. Int J Heat Fluid Flow 32:298–307CrossRef
Zurück zum Zitat Darhuber AA, Miller SM, Troian SM and Wagner S (2000) Process simulation for contact print microlithography. In: Technical proceedings of the international conference on modeling and simulation of microsystems, San Diego, Mar 2000, pp 28–31 Darhuber AA, Miller SM, Troian SM and Wagner S (2000) Process simulation for contact print microlithography. In: Technical proceedings of the international conference on modeling and simulation of microsystems, San Diego, Mar 2000, pp 28–31
Zurück zum Zitat Elsayad S, Morsy F, El-Sherbiny S, Abdou E (2002) Some factors affecting ink transfer in gravure printing. Pigm Resin Technol 31:234–240CrossRef Elsayad S, Morsy F, El-Sherbiny S, Abdou E (2002) Some factors affecting ink transfer in gravure printing. Pigm Resin Technol 31:234–240CrossRef
Zurück zum Zitat Gillett EK et al (1991) Gravure process and technology. Gravure Association of America, Gravure Education Foundation Gillett EK et al (1991) Gravure process and technology. Gravure Association of America, Gravure Education Foundation
Zurück zum Zitat Hagberg J, Pudas M, Leppävuori S, Elsey K, Logan A (2001) Gravure offset printing development for fine line thick film circuits. Microelectron Int 18:32–35CrossRef Hagberg J, Pudas M, Leppävuori S, Elsey K, Logan A (2001) Gravure offset printing development for fine line thick film circuits. Microelectron Int 18:32–35CrossRef
Zurück zum Zitat Hahne P, Hirth E, Reis IE, Schwichtenberg K, Richtering W, Horn FM, Eggenweiler U (2001) Progress in thick-film pad printing technique for solar cells. Sol Energy Mater Sol Cells 65:399–407CrossRef Hahne P, Hirth E, Reis IE, Schwichtenberg K, Richtering W, Horn FM, Eggenweiler U (2001) Progress in thick-film pad printing technique for solar cells. Sol Energy Mater Sol Cells 65:399–407CrossRef
Zurück zum Zitat Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian-Euleriantechnique. J Comput Phys 169:427–462MathSciNetMATHCrossRef Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian-Euleriantechnique. J Comput Phys 169:427–462MathSciNetMATHCrossRef
Zurück zum Zitat Huang W, Ren Y, Russell RD (1994) Moving mesh methods based on moving mesh partial-differential equations. J Comput Phys 113:279–290MathSciNetMATHCrossRef Huang W, Ren Y, Russell RD (1994) Moving mesh methods based on moving mesh partial-differential equations. J Comput Phys 113:279–290MathSciNetMATHCrossRef
Zurück zum Zitat Huang W, Lee SH, Hyung JS, Lee TM, Kim DS (2008) Simulation of liquid transfer between separating walls for modeling micro-gravure-offset printing. Int J Heat Fluid Flow 29:1436–1446CrossRef Huang W, Lee SH, Hyung JS, Lee TM, Kim DS (2008) Simulation of liquid transfer between separating walls for modeling micro-gravure-offset printing. Int J Heat Fluid Flow 29:1436–1446CrossRef
Zurück zum Zitat Kang HW, Sung HJ, Lee TM, Kim DS, Kim CJ (2009) Liquid transfer experiment for micro-gravure-offset printing depending on the surface contact angle. J Micromech Microeng 19:15–25 Kang HW, Sung HJ, Lee TM, Kim DS, Kim CJ (2009) Liquid transfer experiment for micro-gravure-offset printing depending on the surface contact angle. J Micromech Microeng 19:15–25
Zurück zum Zitat Kim CH, Shin SH, Lee HG, Kim J (2009) Phase-field model for the Pinchoff of liquid–liquid jets. J Korean Phys Soc 55:1451–1460CrossRef Kim CH, Shin SH, Lee HG, Kim J (2009) Phase-field model for the Pinchoff of liquid–liquid jets. J Korean Phys Soc 55:1451–1460CrossRef
Zurück zum Zitat Lee S, Na Y (2010) Analysis on the ink transfer mechanism in R2R application. J Mech Sci Technol 24:293–296CrossRef Lee S, Na Y (2010) Analysis on the ink transfer mechanism in R2R application. J Mech Sci Technol 24:293–296CrossRef
Zurück zum Zitat Mikami Y et al (1994) A new patterning process concept for large-area transistor circuit fabrication without using an optical mask aligner. IEEE Trans Electron Device 41(3):306–314CrossRef Mikami Y et al (1994) A new patterning process concept for large-area transistor circuit fabrication without using an optical mask aligner. IEEE Trans Electron Device 41(3):306–314CrossRef
Zurück zum Zitat Milosevic IN, Longmire EK (2002) Pinch-off modes and satellite formation in liquid/liquid jet systems. Int J Multiph Flow 28:1853–1869MATHCrossRef Milosevic IN, Longmire EK (2002) Pinch-off modes and satellite formation in liquid/liquid jet systems. Int J Multiph Flow 28:1853–1869MATHCrossRef
Zurück zum Zitat Powell CA, Savage MD, Guthrie JT (2002) Computational simulation of the printing of Newtonian liquid from a trapezoidal cavity. Int J Numer Meth Heat Fluid Flow 12:338–355MATHCrossRef Powell CA, Savage MD, Guthrie JT (2002) Computational simulation of the printing of Newtonian liquid from a trapezoidal cavity. Int J Numer Meth Heat Fluid Flow 12:338–355MATHCrossRef
Zurück zum Zitat Pudas M, Hagberg J, Leppavuori S (2002) The absorption ink transfer mechanism of gravure offset printing for electronic circuitry. IEEE Trans Electron Packag Manuf 25:335–343CrossRef Pudas M, Hagberg J, Leppavuori S (2002) The absorption ink transfer mechanism of gravure offset printing for electronic circuitry. IEEE Trans Electron Packag Manuf 25:335–343CrossRef
Zurück zum Zitat Pudas M, Hagberg J, Leppävuori S, Elsey K, Logan A (2004a) Methods for the evaluation of fine-line offset gravure printing inks for ceramics. Color Technol 120:119–126CrossRef Pudas M, Hagberg J, Leppävuori S, Elsey K, Logan A (2004a) Methods for the evaluation of fine-line offset gravure printing inks for ceramics. Color Technol 120:119–126CrossRef
Zurück zum Zitat Pudas M, Hagberg J, Leppavuori S (2004b) Printing parameters and ink components affecting ultra-fine-line gravure-offset printing for electronics applications. J Eur Ceram Soc 24:2943–2950CrossRef Pudas M, Hagberg J, Leppavuori S (2004b) Printing parameters and ink components affecting ultra-fine-line gravure-offset printing for electronics applications. J Eur Ceram Soc 24:2943–2950CrossRef
Zurück zum Zitat Yue P, Feng JJ, Liu C, Shen J (2004) A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech 515:293–317MathSciNetMATHCrossRef Yue P, Feng JJ, Liu C, Shen J (2004) A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech 515:293–317MathSciNetMATHCrossRef
Zurück zum Zitat Yue P, Zhou C, Feng JJ, Ollivier-Gooch CF, Hu HH (2006) Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J Comput Phys 219:47–67MathSciNetMATHCrossRef Yue P, Zhou C, Feng JJ, Ollivier-Gooch CF, Hu HH (2006) Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J Comput Phys 219:47–67MathSciNetMATHCrossRef
Metadaten
Titel
The FEM based liquid transfer model in gravure offset printing using phase field method
verfasst von
Sang-Shin Park
Youngwon Jeon
Migyung Cho
Cheolho Bai
Dong-yeon Lee
Jaesool Shim
Publikationsdatum
01.12.2012
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 12/2012
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-012-1652-4

Weitere Artikel der Ausgabe 12/2012

Microsystem Technologies 12/2012 Zur Ausgabe

Neuer Inhalt