Skip to main content
Erschienen in: Engineering with Computers 3/2017

01.10.2016 | Original Article

The meshfree strong form methods for solving one dimensional inverse Cauchy-Stefan problem

verfasst von: Jamal Amani Rad, Kamal Rashedi, Kourosh Parand, Hojatollah Adibi

Erschienen in: Engineering with Computers | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we extend the application of meshfree node based schemes for solving one-dimensional inverse Cauchy-Stefan problem. The aim is devoted to recover the initial and boundary conditions from some Cauchy data lying on the admissible curve s(t) as the extra overspecifications. To keep matters simple, the problem has been considered in one dimensional, however the physical domain of the problem is supposed as an irregular bounded domain in \(\mathbb {R}^2\). The methods provide the space-time approximations for the heat temperature derived by expanding the required approximate solutions using collocation scheme based on radial point interpolation method (RPIM). The proposed method makes appropriate shape functions which possess the important Delta function property to satisfy the essential conditions automatically. In addition, to conquer the ill-posedness of the problem, particular optimization technique has been applied for solving the system of equations \(Ax=b\) in which A is a nonsymmetric stiffness matrix. As the consequences, reliable approximate solutions are obtained which continuously depend on input data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Samarskii A, Vabishchevich A (2007) Numerical methods for solving inverse problems of mathematical physics. Walter de Gruyter, BerlinCrossRefMATH Samarskii A, Vabishchevich A (2007) Numerical methods for solving inverse problems of mathematical physics. Walter de Gruyter, BerlinCrossRefMATH
2.
Zurück zum Zitat Tikhonov A, Arsenin V (1986) Solution methods for Ill-posed problems. Nauka, MoscowMATH Tikhonov A, Arsenin V (1986) Solution methods for Ill-posed problems. Nauka, MoscowMATH
3.
Zurück zum Zitat Vabishchevich A, Samarskii A (1999) Additive schemes for mathematical-physics problems. Nauka, MoscowMATH Vabishchevich A, Samarskii A (1999) Additive schemes for mathematical-physics problems. Nauka, MoscowMATH
4.
Zurück zum Zitat Beck JV, Blackwell B, C. R. S. C. Jr. (1985) Inverse heat conduction, J. Wiley-Intersc, New York Beck JV, Blackwell B, C. R. S. C. Jr. (1985) Inverse heat conduction, J. Wiley-Intersc, New York
5.
Zurück zum Zitat Johansson B, Lesnic D (2008) A procedure for determining a spacewise dependent heat source and the initial temperature. Appl Anal 87:265–276MathSciNetCrossRefMATH Johansson B, Lesnic D (2008) A procedure for determining a spacewise dependent heat source and the initial temperature. Appl Anal 87:265–276MathSciNetCrossRefMATH
6.
Zurück zum Zitat Johansson B, Lesnic D (2007) A variational method for identifying a spacewise-dependent heat source. IMA J Appl Math 72:748–760MathSciNetCrossRefMATH Johansson B, Lesnic D (2007) A variational method for identifying a spacewise-dependent heat source. IMA J Appl Math 72:748–760MathSciNetCrossRefMATH
7.
Zurück zum Zitat Cannon J, Lin Y, Xu S (1994) Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations. Inverse Probl 10:227–243MathSciNetCrossRefMATH Cannon J, Lin Y, Xu S (1994) Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations. Inverse Probl 10:227–243MathSciNetCrossRefMATH
8.
Zurück zum Zitat Cannon J, Yin H (1990) Numerical solutions of some parabolic inverse problems. Numer Methods Partial Differen Eqs 2:177–191MathSciNetCrossRefMATH Cannon J, Yin H (1990) Numerical solutions of some parabolic inverse problems. Numer Methods Partial Differen Eqs 2:177–191MathSciNetCrossRefMATH
9.
Zurück zum Zitat Dehghan M (2006) A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer Meth Part Diff Eq 22:220–257MathSciNetCrossRefMATH Dehghan M (2006) A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer Meth Part Diff Eq 22:220–257MathSciNetCrossRefMATH
10.
Zurück zum Zitat Dehghan M (2005) Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Appl Numer Math 52:39–62MathSciNetCrossRefMATH Dehghan M (2005) Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Appl Numer Math 52:39–62MathSciNetCrossRefMATH
11.
Zurück zum Zitat Dehghan M (2007) The one-dimensional heat equation subject to a boundary integral specification. Chaos Solitons Fract 32:661–675MathSciNetCrossRefMATH Dehghan M (2007) The one-dimensional heat equation subject to a boundary integral specification. Chaos Solitons Fract 32:661–675MathSciNetCrossRefMATH
12.
Zurück zum Zitat Johansson B, Lesnic D, Reeve T (2011) A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl Math Model 35:4367–4378MathSciNetCrossRefMATH Johansson B, Lesnic D, Reeve T (2011) A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl Math Model 35:4367–4378MathSciNetCrossRefMATH
13.
Zurück zum Zitat Johansson B, Lesnic D, Reeve T (2011) Numerical approximation of the one-dimensional inverse Cauchy-Stefan problem using a method of fundamental solutions. Inverse Probl Sci Eng 19:659–677MathSciNetCrossRefMATH Johansson B, Lesnic D, Reeve T (2011) Numerical approximation of the one-dimensional inverse Cauchy-Stefan problem using a method of fundamental solutions. Inverse Probl Sci Eng 19:659–677MathSciNetCrossRefMATH
14.
Zurück zum Zitat Cannon JR, J. D. Jr. (1967) The Cauchy problem for the heat equation, SIAM J Numer Anal 4 :317–336 Cannon JR, J. D. Jr. (1967) The Cauchy problem for the heat equation, SIAM J Numer Anal 4 :317–336
15.
Zurück zum Zitat Lucy L (1977) A numerical approach to the testing of fusion process. Astron J 88:1013–1024CrossRef Lucy L (1977) A numerical approach to the testing of fusion process. Astron J 88:1013–1024CrossRef
16.
Zurück zum Zitat Touzot BNG, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318CrossRefMATH Touzot BNG, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318CrossRefMATH
17.
Zurück zum Zitat Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314MathSciNetCrossRefMATH Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314MathSciNetCrossRefMATH
18.
Zurück zum Zitat Duarte C, Oden J (1996) An h-p adaptative method using clouds. Comput Methods Appl Mech Eng 139:237–262CrossRefMATH Duarte C, Oden J (1996) An h-p adaptative method using clouds. Comput Methods Appl Mech Eng 139:237–262CrossRefMATH
20.
Zurück zum Zitat Dehghan M, Abbaszadeh M, Mohebbi A (2016) The use of element free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of Turing models. Eng Anal Bound Elem 62:93–111MathSciNetCrossRef Dehghan M, Abbaszadeh M, Mohebbi A (2016) The use of element free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of Turing models. Eng Anal Bound Elem 62:93–111MathSciNetCrossRef
22.
Zurück zum Zitat Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19:127–145MathSciNetCrossRefMATH Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19:127–145MathSciNetCrossRefMATH
23.
Zurück zum Zitat Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J Comput Appl Math 230:400–410MathSciNetCrossRefMATH Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J Comput Appl Math 230:400–410MathSciNetCrossRefMATH
24.
Zurück zum Zitat Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. App Math Comput 218:5292–5309MathSciNetCrossRefMATH Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. App Math Comput 218:5292–5309MathSciNetCrossRefMATH
25.
Zurück zum Zitat Rad JA, Kazem S, Parand K (2012) A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions. Comput Math Appl 64:2049–2065MathSciNetCrossRefMATH Rad JA, Kazem S, Parand K (2012) A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions. Comput Math Appl 64:2049–2065MathSciNetCrossRefMATH
26.
Zurück zum Zitat Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Modell 33:1729–1738MathSciNetCrossRefMATH Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Modell 33:1729–1738MathSciNetCrossRefMATH
27.
Zurück zum Zitat Atluri S, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method, Tech Science Press Atluri S, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method, Tech Science Press
28.
Zurück zum Zitat Dehghan M, Mirzaei D (2009) Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058MathSciNetCrossRefMATH Dehghan M, Mirzaei D (2009) Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058MathSciNetCrossRefMATH
29.
Zurück zum Zitat Dehghan M, Mirzaei D (2008) The meshless local Petrov-Galerkin MLPG method for the generalized two-dimensional non-linear Schrodinger equation. Eng Anal Bound Elem 32:747–756CrossRefMATH Dehghan M, Mirzaei D (2008) The meshless local Petrov-Galerkin MLPG method for the generalized two-dimensional non-linear Schrodinger equation. Eng Anal Bound Elem 32:747–756CrossRefMATH
30.
Zurück zum Zitat Liu G, Gu Y (2005) An introduction to meshfree methods and their programing. Springer, Netherlands Liu G, Gu Y (2005) An introduction to meshfree methods and their programing. Springer, Netherlands
31.
Zurück zum Zitat Rad JA, Parand K, Ballestra LV (2015) Pricing European and American options by radial basis point interpolation. Appl Math Comput 251:363–377MathSciNetMATH Rad JA, Parand K, Ballestra LV (2015) Pricing European and American options by radial basis point interpolation. Appl Math Comput 251:363–377MathSciNetMATH
32.
Zurück zum Zitat Rad JA, Parand K, Abbasbandy S (2015) Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options. Commun Nonlin Sci Numer Simul 22:1178–1200MathSciNetCrossRefMATH Rad JA, Parand K, Abbasbandy S (2015) Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options. Commun Nonlin Sci Numer Simul 22:1178–1200MathSciNetCrossRefMATH
33.
34.
Zurück zum Zitat Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics II. solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161MathSciNetCrossRefMATH Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics II. solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161MathSciNetCrossRefMATH
35.
Zurück zum Zitat Sharan M, Kansa EJ, Gupta S (1997) Application of the multiquadric method for numerical solution of elliptic partial differential equations. Appl Math Comput 84:275–302MathSciNetMATH Sharan M, Kansa EJ, Gupta S (1997) Application of the multiquadric method for numerical solution of elliptic partial differential equations. Appl Math Comput 84:275–302MathSciNetMATH
36.
Zurück zum Zitat Power H, Zerroukat M, Chen C (1998) A numerical method for heat transfer problems using collocation and radial basis functions. Int J Numer Meth Eng 42:1263–1278CrossRefMATH Power H, Zerroukat M, Chen C (1998) A numerical method for heat transfer problems using collocation and radial basis functions. Int J Numer Meth Eng 42:1263–1278CrossRefMATH
37.
Zurück zum Zitat Mai-Duy N, Tran-Cong T (2001) Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw 14:185–199CrossRefMATH Mai-Duy N, Tran-Cong T (2001) Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw 14:185–199CrossRefMATH
38.
Zurück zum Zitat Tatari M, Dehghan M (2010) A method for solving partial differential equations via radial basis functions: application to the heat equation. Eng Anal Bound Elem 34:206–212MathSciNetCrossRefMATH Tatari M, Dehghan M (2010) A method for solving partial differential equations via radial basis functions: application to the heat equation. Eng Anal Bound Elem 34:206–212MathSciNetCrossRefMATH
39.
Zurück zum Zitat Alipanah A, Dehghan M (2007) Numerical solution of the nonlinear Fredholm integral equations by positive definite functions. Appl Math Comput 190:1754–1761MathSciNetMATH Alipanah A, Dehghan M (2007) Numerical solution of the nonlinear Fredholm integral equations by positive definite functions. Appl Math Comput 190:1754–1761MathSciNetMATH
40.
Zurück zum Zitat Sarra S (2005) Adaptive radial basis function method for time dependent partial differential equations. Appl Numer Math 54:79–94MathSciNetCrossRefMATH Sarra S (2005) Adaptive radial basis function method for time dependent partial differential equations. Appl Numer Math 54:79–94MathSciNetCrossRefMATH
41.
Zurück zum Zitat Kazem S, Rad JA, Parand K (2012) Radial basis functions methods for solving Fokker-Planck equation. Eng Anal Bound Elem 36:181–189MathSciNetCrossRefMATH Kazem S, Rad JA, Parand K (2012) Radial basis functions methods for solving Fokker-Planck equation. Eng Anal Bound Elem 36:181–189MathSciNetCrossRefMATH
42.
Zurück zum Zitat Kazem S, Rad JA, Parand K (2012) A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions. Comput Math Appl 64:399–412MathSciNetCrossRefMATH Kazem S, Rad JA, Parand K (2012) A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions. Comput Math Appl 64:399–412MathSciNetCrossRefMATH
43.
Zurück zum Zitat Parand K, Rad JA (2012) Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement. Compu Phys Commun. doi:10.1016/j.cpc.2012.10.012 Parand K, Rad JA (2012) Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement. Compu Phys Commun. doi:10.​1016/​j.​cpc.​2012.​10.​012
44.
Zurück zum Zitat Rippa S (1999) An algorithm for selecting a good parameter \(c\) in radial basis function interpolation. Advan Comp Math 11:193–210MathSciNetCrossRefMATH Rippa S (1999) An algorithm for selecting a good parameter \(c\) in radial basis function interpolation. Advan Comp Math 11:193–210MathSciNetCrossRefMATH
45.
Zurück zum Zitat Cheng AHD, Golberg MA, Kansa EJ, Zammito Q (2003) Exponential convergence and H-\(c\) multiquadric collocation method for partial differential equations. Numer Meth Part DE 19:571–594MathSciNetCrossRefMATH Cheng AHD, Golberg MA, Kansa EJ, Zammito Q (2003) Exponential convergence and H-\(c\) multiquadric collocation method for partial differential equations. Numer Meth Part DE 19:571–594MathSciNetCrossRefMATH
47.
Zurück zum Zitat Tarwater AE (1985) A parameter study of Hardy’s multiquadric method for scattered data interpolation, Report UCRL-53670, Lawrence Livermore National Laboratory Tarwater AE (1985) A parameter study of Hardy’s multiquadric method for scattered data interpolation, Report UCRL-53670, Lawrence Livermore National Laboratory
48.
49.
Zurück zum Zitat Powell M (1992) The Theory of radial basis function approximation in 1990. Clarendon, OxfordMATH Powell M (1992) The Theory of radial basis function approximation in 1990. Clarendon, OxfordMATH
51.
Zurück zum Zitat Buhmann MD (2004) Radial basis functions: theory and implementations. Cambridge University Press, New YorkMATH Buhmann MD (2004) Radial basis functions: theory and implementations. Cambridge University Press, New YorkMATH
52.
Zurück zum Zitat Wendland H (2005) Scattered data approximation. Cambridge University Press, New YorkMATH Wendland H (2005) Scattered data approximation. Cambridge University Press, New YorkMATH
54.
Zurück zum Zitat Liu G, Gu Y (1999) A point interpolation method, Proceeding of 4th Asia-Pacific Conference on computational mechanics, Singapor 1009–1014 Liu G, Gu Y (1999) A point interpolation method, Proceeding of 4th Asia-Pacific Conference on computational mechanics, Singapor 1009–1014
55.
Zurück zum Zitat Liu G, Gu Y (2001) A point interpolation method for two-dimensional solid. Int J Numer Meth Eng 50:937–951CrossRefMATH Liu G, Gu Y (2001) A point interpolation method for two-dimensional solid. Int J Numer Meth Eng 50:937–951CrossRefMATH
56.
Zurück zum Zitat Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng 54:1623–1648CrossRefMATH Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng 54:1623–1648CrossRefMATH
57.
Zurück zum Zitat Wang J, Liu G (2002) On the optimal shape parameters of radial basis functions used for 2\(d\) meshless methods. Comput Meth Appl Mech Eng 191:2611–2630MathSciNetCrossRefMATH Wang J, Liu G (2002) On the optimal shape parameters of radial basis functions used for 2\(d\) meshless methods. Comput Meth Appl Mech Eng 191:2611–2630MathSciNetCrossRefMATH
58.
Zurück zum Zitat Li X, Zhu J, Zhang S (2009) A hybrid radial boundary node method based on radial basis point interpolation. Eng Anal Bound Elem 33:1273–1283MathSciNetCrossRefMATH Li X, Zhu J, Zhang S (2009) A hybrid radial boundary node method based on radial basis point interpolation. Eng Anal Bound Elem 33:1273–1283MathSciNetCrossRefMATH
59.
Zurück zum Zitat Liu GR, Dai K, Lim KM, Gu Y (2003) A radial point interpolation method for simulation of two-dimensional piezoelectric structures. Smart Mat Struct 12:171–180CrossRef Liu GR, Dai K, Lim KM, Gu Y (2003) A radial point interpolation method for simulation of two-dimensional piezoelectric structures. Smart Mat Struct 12:171–180CrossRef
60.
Zurück zum Zitat Liu G (2009) Meshfree methods: moving beyond the finite element method. Taylor and Francis/CRC Press, Boca RatonCrossRef Liu G (2009) Meshfree methods: moving beyond the finite element method. Taylor and Francis/CRC Press, Boca RatonCrossRef
61.
Zurück zum Zitat Liu G, Jiang Y, Chen L, Zhang G, Zhang Y (2011) A singular cell-based smoothed radial point interpolation method for fracture problems. Comput Struct 89:1378–1396CrossRef Liu G, Jiang Y, Chen L, Zhang G, Zhang Y (2011) A singular cell-based smoothed radial point interpolation method for fracture problems. Comput Struct 89:1378–1396CrossRef
62.
Zurück zum Zitat Liu G, Dai K, Lim K, Gu Y (2002) A point interpolation meshfree method for static and frequency analysis of two-dimensional piezoelectric structures. Comput Mech 29:510–519CrossRefMATH Liu G, Dai K, Lim K, Gu Y (2002) A point interpolation meshfree method for static and frequency analysis of two-dimensional piezoelectric structures. Comput Mech 29:510–519CrossRefMATH
63.
Zurück zum Zitat Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phy Commun 181:772–786MathSciNetCrossRefMATH Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phy Commun 181:772–786MathSciNetCrossRefMATH
64.
Zurück zum Zitat Liu G, Gu Y (2001) A local radial point interpolation method (LRPIM) for free vibration analysis of 2-\(d\) solids. J Sound Vib 246:29–46CrossRef Liu G, Gu Y (2001) A local radial point interpolation method (LRPIM) for free vibration analysis of 2-\(d\) solids. J Sound Vib 246:29–46CrossRef
65.
Zurück zum Zitat Gu Y, Liu G (2002) A boundary radial point interpolation method (BRPIM) for 2-\(d\) structural analyses. Struct Eng Mech 15:535–550CrossRef Gu Y, Liu G (2002) A boundary radial point interpolation method (BRPIM) for 2-\(d\) structural analyses. Struct Eng Mech 15:535–550CrossRef
66.
Zurück zum Zitat Krige D (1976) A review of the development of geostatistics in south africa. In: David M, huijbregts C (eds), Advanced Geostatistics in the Mining Industry, Holland (1976) 279–293 Krige D (1976) A review of the development of geostatistics in south africa. In: David M, huijbregts C (eds), Advanced Geostatistics in the Mining Industry, Holland (1976) 279–293
67.
Zurück zum Zitat Gu L (2003) Moving Kriging interpolation and element-free Galerkin method. Int J Numer Methods Eng 56:1–11CrossRefMATH Gu L (2003) Moving Kriging interpolation and element-free Galerkin method. Int J Numer Methods Eng 56:1–11CrossRefMATH
68.
Zurück zum Zitat Chen L, Liew KM (2011) A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems. Comput Mech 47:455–467MathSciNetCrossRefMATH Chen L, Liew KM (2011) A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems. Comput Mech 47:455–467MathSciNetCrossRefMATH
69.
Zurück zum Zitat Dai KY, Liu GR, Lim KM, Gu YT (2003) Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. Comput Mech 32:60–70CrossRefMATH Dai KY, Liu GR, Lim KM, Gu YT (2003) Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. Comput Mech 32:60–70CrossRefMATH
70.
Zurück zum Zitat Bui TQ, Nguyen MN (2011) A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput Struct 89:380–394CrossRef Bui TQ, Nguyen MN (2011) A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput Struct 89:380–394CrossRef
71.
Zurück zum Zitat Khattak AJ, Tirmizi SIA, Islam SU (2009) Application of meshfree collocation method to a class of nonlinear partial differential equations. Eng Anal Bound Elem 33:661–667MathSciNetCrossRefMATH Khattak AJ, Tirmizi SIA, Islam SU (2009) Application of meshfree collocation method to a class of nonlinear partial differential equations. Eng Anal Bound Elem 33:661–667MathSciNetCrossRefMATH
72.
Zurück zum Zitat Dehghan M, Shokri A (2009) A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions. Numer Algorithms 52:461–477MathSciNetCrossRefMATH Dehghan M, Shokri A (2009) A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions. Numer Algorithms 52:461–477MathSciNetCrossRefMATH
73.
Zurück zum Zitat Fornberg B, Flyer N, Russell JM (2010) Comparisons between pseudospectral and radial basis function derivative approximations. IMA J Numer Anal 30:149–172MathSciNetCrossRefMATH Fornberg B, Flyer N, Russell JM (2010) Comparisons between pseudospectral and radial basis function derivative approximations. IMA J Numer Anal 30:149–172MathSciNetCrossRefMATH
74.
Zurück zum Zitat Fornberg B, Dirscol T, Wright G, Charles R (2002) Observations on the behavior of radial basis function approximations near boundaries. Comput Math Appl 43:473–490MathSciNetCrossRefMATH Fornberg B, Dirscol T, Wright G, Charles R (2002) Observations on the behavior of radial basis function approximations near boundaries. Comput Math Appl 43:473–490MathSciNetCrossRefMATH
75.
Zurück zum Zitat Ballestra LV, Pacelli G (2013) Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach. J Econ Dyn Cont 37:1142–1167MathSciNetCrossRef Ballestra LV, Pacelli G (2013) Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach. J Econ Dyn Cont 37:1142–1167MathSciNetCrossRef
76.
Zurück zum Zitat Ballestra LV, Pacelli G (2012) A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng Anal Bound Elem 36:1546–1554MathSciNetCrossRefMATH Ballestra LV, Pacelli G (2012) A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng Anal Bound Elem 36:1546–1554MathSciNetCrossRefMATH
77.
Zurück zum Zitat Ballestra LV, Pacelli G (2011) Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng Anal Bound Elem 35:1075–1084MathSciNetCrossRefMATH Ballestra LV, Pacelli G (2011) Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng Anal Bound Elem 35:1075–1084MathSciNetCrossRefMATH
78.
Zurück zum Zitat Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93:73–82MathSciNetMATH Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93:73–82MathSciNetMATH
79.
Zurück zum Zitat Huang CS, Lee CF, Cheng AHD (2010) On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs. Eng Anal Bound Elem 34:802–809MathSciNetCrossRefMATH Huang CS, Lee CF, Cheng AHD (2010) On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs. Eng Anal Bound Elem 34:802–809MathSciNetCrossRefMATH
80.
Zurück zum Zitat Huang CS, Yen HD, Cheng AHD (2007) Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Eng Anal Bound Elem 31:614–623CrossRefMATH Huang CS, Yen HD, Cheng AHD (2007) Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Eng Anal Bound Elem 31:614–623CrossRefMATH
82.
Zurück zum Zitat Dennis J, Schnabel R (1996) Numerical methods for unconstrained optimization, SIAM Dennis J, Schnabel R (1996) Numerical methods for unconstrained optimization, SIAM
83.
Zurück zum Zitat Nocedal J, Wright S (1999) Numerical optimization, Springer Nocedal J, Wright S (1999) Numerical optimization, Springer
84.
Zurück zum Zitat Sherman J, Morrison W (1949) Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Ann Math Statis 20:620–624CrossRef Sherman J, Morrison W (1949) Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Ann Math Statis 20:620–624CrossRef
85.
Zurück zum Zitat Dehghan M, Yousefi S, Rashedi K. Ritz-Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via bernstein multi-scaling functions and cubic B-spline functions. Inverse Probl Sci Eng (In press) Dehghan M, Yousefi S, Rashedi K. Ritz-Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via bernstein multi-scaling functions and cubic B-spline functions. Inverse Probl Sci Eng (In press)
86.
Zurück zum Zitat Murio D (1992) Solution of inverse heat conduction problems with phase changes by the mollification method. Comput Math Appl 24:45–57MathSciNetCrossRefMATH Murio D (1992) Solution of inverse heat conduction problems with phase changes by the mollification method. Comput Math Appl 24:45–57MathSciNetCrossRefMATH
87.
Zurück zum Zitat Slodicka M, Lesnic D, Onyango T (2010) Determination of a time-dependent heat transfer coefficient in a nonlinear inverse heat conduction problem. Inverse Probl Sci Eng 18:65–81MathSciNetCrossRefMATH Slodicka M, Lesnic D, Onyango T (2010) Determination of a time-dependent heat transfer coefficient in a nonlinear inverse heat conduction problem. Inverse Probl Sci Eng 18:65–81MathSciNetCrossRefMATH
88.
Zurück zum Zitat Wang Y, Yagola AG, Yang C (2010) Optimization and regularization for computational inverse problems and applications. Higher Education Press, BeijingMATH Wang Y, Yagola AG, Yang C (2010) Optimization and regularization for computational inverse problems and applications. Higher Education Press, BeijingMATH
89.
90.
Zurück zum Zitat Galperin EA, Kansa EJ (2002) Application of global optimization and radial basis functions to numerical solutions of weakly singular volterra integral equations. Comput Math Appl 43:491–499MathSciNetCrossRefMATH Galperin EA, Kansa EJ (2002) Application of global optimization and radial basis functions to numerical solutions of weakly singular volterra integral equations. Comput Math Appl 43:491–499MathSciNetCrossRefMATH
91.
Zurück zum Zitat Kansa EJ, Ling L (2014) Collocation and optimization initialization. WIT Press, Boundary Elements and Other Mesh Reduction Methods XXXVIICrossRefMATH Kansa EJ, Ling L (2014) Collocation and optimization initialization. WIT Press, Boundary Elements and Other Mesh Reduction Methods XXXVIICrossRefMATH
92.
Zurück zum Zitat Kansa EJ (2015) Radial basis functions: achievements and challenges. WIT Press, Boundary Elements and Other Mesh Reduction Methods XXXVIIIMATH Kansa EJ (2015) Radial basis functions: achievements and challenges. WIT Press, Boundary Elements and Other Mesh Reduction Methods XXXVIIIMATH
93.
Zurück zum Zitat Kansa EJ (2012) Strong form collocation input for optimization. WIT Press, Boundary Elements and Other Mesh Reduction Methods XVII Kansa EJ (2012) Strong form collocation input for optimization. WIT Press, Boundary Elements and Other Mesh Reduction Methods XVII
Metadaten
Titel
The meshfree strong form methods for solving one dimensional inverse Cauchy-Stefan problem
verfasst von
Jamal Amani Rad
Kamal Rashedi
Kourosh Parand
Hojatollah Adibi
Publikationsdatum
01.10.2016
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2017
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-016-0489-3

Weitere Artikel der Ausgabe 3/2017

Engineering with Computers 3/2017 Zur Ausgabe

Neuer Inhalt