Skip to main content
Erschienen in: Polymer Bulletin 4/2022

11.03.2021 | Review Paper

The preparation of sorbitol and its application in polyurethane: a review

verfasst von: Jiacheng Xiang, Saisai Yang, Jing Zhang, Jinjing Wu, Yinlin Shao, Zefeng Wang, Minghua Yang

Erschienen in: Polymer Bulletin | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With environmental and resource issues become increasingly prominent, as well as the requirements of the bioeconomy, the synthesis of polyurethane tends to follow the green chemistry and uses sustainable biological resources as raw materials. As a kind of biomass material, sorbitol has great potential for the bio-based polyurethane industry because of the high performance that sorbitol brings to polyurethane. What,s more, the various extraction technologies for sorbitol have matured. This paper reviews the extraction methods of sorbitol and analyzes the effects of sorbitol as polyols, crosslinkers and chain extenders used in polyurethane. Sorbitol based non-isocyanate polyurethane was also introduced.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnama N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications-a review. RSC Adv 6:114CrossRef Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnama N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications-a review. RSC Adv 6:114CrossRef
2.
Zurück zum Zitat Ugarte L, Gomez-Fernandez S, Pena-Rodriuez C, Prociak A (2015) Maria Angeles Corcuera and Arantxa Eceiza, tailoring mechanical properties of rigid polyurethane foams by sorbitol and corn derived biopolyol mixtures. ACS Sustainable Chem Eng 3:3382–3387CrossRef Ugarte L, Gomez-Fernandez S, Pena-Rodriuez C, Prociak A (2015) Maria Angeles Corcuera and Arantxa Eceiza, tailoring mechanical properties of rigid polyurethane foams by sorbitol and corn derived biopolyol mixtures. ACS Sustainable Chem Eng 3:3382–3387CrossRef
3.
Zurück zum Zitat Hojabri L, Kong X, Narine SS (2009) Produced from vegetable oil: synthesis, polymerization and characterization. Biomacromol 10:415CrossRef Hojabri L, Kong X, Narine SS (2009) Produced from vegetable oil: synthesis, polymerization and characterization. Biomacromol 10:415CrossRef
4.
Zurück zum Zitat Allauddin S, Narayan R, Raju KVSN (2019) Synthesis and properties of alkoxy silane castor oil and their polyurethane/urea-silica hybrid coating films. ACS Sustainable Chemistry & Engineering 1(8):910–918CrossRef Allauddin S, Narayan R, Raju KVSN (2019) Synthesis and properties of alkoxy silane castor oil and their polyurethane/urea-silica hybrid coating films. ACS Sustainable Chemistry & Engineering 1(8):910–918CrossRef
5.
Zurück zum Zitat Wang C, Zheng Y, Xie Y, Qiao K, Sun Yi, Yue L (2015) Synthesis of bio-castor oil polyurethane flexible foams and the influence of biotic component on their performance. J Polym Res 22:145CrossRef Wang C, Zheng Y, Xie Y, Qiao K, Sun Yi, Yue L (2015) Synthesis of bio-castor oil polyurethane flexible foams and the influence of biotic component on their performance. J Polym Res 22:145CrossRef
6.
Zurück zum Zitat Ozgur Seydibeyoglu M, Misra M, Mohanty A, Blaker JJ, Lee KY, Bismarck A, Kazemizadeh M (2013) Green polyurethane nanocomposites from soy polyol and bacterial cellulose. J Mater Sci 48:2167–2175CrossRef Ozgur Seydibeyoglu M, Misra M, Mohanty A, Blaker JJ, Lee KY, Bismarck A, Kazemizadeh M (2013) Green polyurethane nanocomposites from soy polyol and bacterial cellulose. J Mater Sci 48:2167–2175CrossRef
7.
Zurück zum Zitat Aunga Min Min, Yaakobb Zahira, Kamarudinb Siti, Abdullah Luqman Chuah (2014) Synthesis and characterization of Jatropha (Jatropha curcas L) oil-based polyurethane wood adhesive. Indus Crops Prod 60:177–185CrossRef Aunga Min Min, Yaakobb Zahira, Kamarudinb Siti, Abdullah Luqman Chuah (2014) Synthesis and characterization of Jatropha (Jatropha curcas L) oil-based polyurethane wood adhesive. Indus Crops Prod 60:177–185CrossRef
8.
Zurück zum Zitat Patil CK, Rajput SD, Marathe RJ, Kulkarni RD, Phadnis H, Sohn D, Mahulikar PP, Gite VV (2017) Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids. Prog Org Coat 106:87CrossRef Patil CK, Rajput SD, Marathe RJ, Kulkarni RD, Phadnis H, Sohn D, Mahulikar PP, Gite VV (2017) Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids. Prog Org Coat 106:87CrossRef
9.
Zurück zum Zitat Prociak A, Malewska E, Kuranska M, Bqk S, Budny P (2018) Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of different oxirane ring opener. Ind Crops Prod 115:69–77CrossRef Prociak A, Malewska E, Kuranska M, Bqk S, Budny P (2018) Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of different oxirane ring opener. Ind Crops Prod 115:69–77CrossRef
10.
Zurück zum Zitat Marcovich NE, Kuranska M, Prociak A, Malewska E, Kulpa K (2017) Open cell semi-rigid polyurethane foams synthesized using palm oil-based bio-polyol. Ind Crops Prod 102:88–96CrossRef Marcovich NE, Kuranska M, Prociak A, Malewska E, Kulpa K (2017) Open cell semi-rigid polyurethane foams synthesized using palm oil-based bio-polyol. Ind Crops Prod 102:88–96CrossRef
11.
Zurück zum Zitat Meshram PD, Puri RG, Patil AL, Gite VV (2012) High performance moisture cured poly(ether–urethane) amide coatings based on renewable resource (cottonseed oil). J Coat Technol Res 10(3):331–338CrossRef Meshram PD, Puri RG, Patil AL, Gite VV (2012) High performance moisture cured poly(ether–urethane) amide coatings based on renewable resource (cottonseed oil). J Coat Technol Res 10(3):331–338CrossRef
12.
Zurück zum Zitat Headey D (2011) Rethinking the global food crisis: The role of trade shocks[J]. Food Policy 36(2):136–146CrossRef Headey D (2011) Rethinking the global food crisis: The role of trade shocks[J]. Food Policy 36(2):136–146CrossRef
13.
Zurück zum Zitat Zhang P, Lu Y, Fan M et al (2019) Modified cellulose nanocrystals enhancement to mechanical properties and water resistance of vegetable oil- based waterborne polyurethane[J]. J Appl Polym Sci 136(47):48228CrossRef Zhang P, Lu Y, Fan M et al (2019) Modified cellulose nanocrystals enhancement to mechanical properties and water resistance of vegetable oil- based waterborne polyurethane[J]. J Appl Polym Sci 136(47):48228CrossRef
14.
Zurück zum Zitat Chang WL, US Patent, US 6,420,446B1, 2002. Chang WL, US Patent, US 6,420,446B1, 2002.
15.
Zurück zum Zitat Rand L, Thir B, Reegen SL et al (1965) Kinetics of alcohol-isocyanate reactions with metal catalysts[J]. J Appl Polym Sci 9(5):1787–1795CrossRef Rand L, Thir B, Reegen SL et al (1965) Kinetics of alcohol-isocyanate reactions with metal catalysts[J]. J Appl Polym Sci 9(5):1787–1795CrossRef
16.
Zurück zum Zitat Ajithkumar S, Kansara SS, Patel NK (1998) Kinetics of castor oil based polyol-toluene diisocyanate reactions[J]. Eur Polymer J 34(9):1273–1276CrossRef Ajithkumar S, Kansara SS, Patel NK (1998) Kinetics of castor oil based polyol-toluene diisocyanate reactions[J]. Eur Polymer J 34(9):1273–1276CrossRef
17.
Zurück zum Zitat Dyer E, Taylor HA, Mason SJ et al (1949) The rates of reaction of isocyanates with alcohols I Phenyl isocyanate with 1-and 2-butanol[J]. J Am Chem Soc 71(12):4106–4109CrossRef Dyer E, Taylor HA, Mason SJ et al (1949) The rates of reaction of isocyanates with alcohols I Phenyl isocyanate with 1-and 2-butanol[J]. J Am Chem Soc 71(12):4106–4109CrossRef
18.
Zurück zum Zitat Lee S, Shin S-R, Lee D-S (2018) Sorbitol as a chain extender of polyurethane prepolymers to prepare self-healable and robust polyhydroxyurethane elastomers. Molecules 23(10):2515PubMedCentralCrossRef Lee S, Shin S-R, Lee D-S (2018) Sorbitol as a chain extender of polyurethane prepolymers to prepare self-healable and robust polyhydroxyurethane elastomers. Molecules 23(10):2515PubMedCentralCrossRef
19.
Zurück zum Zitat Balandin AA, Vasyunina NA, Barysheva GS et al (1957) Hydrogenation catalysts for polysaccharides[J]. Bull Acad Sci USSR Div Chem Sci 6:403CrossRef Balandin AA, Vasyunina NA, Barysheva GS et al (1957) Hydrogenation catalysts for polysaccharides[J]. Bull Acad Sci USSR Div Chem Sci 6:403CrossRef
20.
Zurück zum Zitat Marques C, Tarek R, Sara M, Brar SK (2016) Sorbitol Production From Biomass and Its Global Market. Platform Chem Bioref 17:217–227CrossRef Marques C, Tarek R, Sara M, Brar SK (2016) Sorbitol Production From Biomass and Its Global Market. Platform Chem Bioref 17:217–227CrossRef
21.
Zurück zum Zitat Jacobs PA, Hinnekens H (1989) Single-step catalytic process for the direct conversion of polysaccharides to polyhydric alcohols by simultaneous hydrolysis and hydrogenation[J]. Eur Patent Appl 18:329 Jacobs PA, Hinnekens H (1989) Single-step catalytic process for the direct conversion of polysaccharides to polyhydric alcohols by simultaneous hydrolysis and hydrogenation[J]. Eur Patent Appl 18:329
22.
Zurück zum Zitat Kobayashi H, Ohta H, Fukuoka A (2012) Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal Sci Technol 2:869–883CrossRef Kobayashi H, Ohta H, Fukuoka A (2012) Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal Sci Technol 2:869–883CrossRef
23.
Zurück zum Zitat Xu L, Wei W, Li H et al (2014) Combination of enzyme and Ru-B amorphous alloy encapsulated in yolk-shell silica for one-pot dextrin conversion to sorbitol [J]. ACS Catalysis 4(1):251–258CrossRef Xu L, Wei W, Li H et al (2014) Combination of enzyme and Ru-B amorphous alloy encapsulated in yolk-shell silica for one-pot dextrin conversion to sorbitol [J]. ACS Catalysis 4(1):251–258CrossRef
24.
Zurück zum Zitat Zhang J, Li J, Wu S et al (2013) Efficient conversion of maltose into sorbitol over magnetic catalyst in extremely low acid[J]. BioResources 8(3):4676–4686CrossRef Zhang J, Li J, Wu S et al (2013) Efficient conversion of maltose into sorbitol over magnetic catalyst in extremely low acid[J]. BioResources 8(3):4676–4686CrossRef
25.
Zurück zum Zitat Schmitt Helene, Creton Nicolas, Prashantha Kalappa, Soulestin Jeremie, Lacrampe Marie-France, Krawczak Patricia (2019) Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications. J Appl Polym Sci 9:41341 Schmitt Helene, Creton Nicolas, Prashantha Kalappa, Soulestin Jeremie, Lacrampe Marie-France, Krawczak Patricia (2019) Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications. J Appl Polym Sci 9:41341
26.
Zurück zum Zitat Barrett Devin G, Merkel Timothy J, Christopher Luft J, Yousaf Muhammad N (2010) One-step syntheses of photocurable polyesters based on a renewable resource. Macromolecules 43:9660–9667CrossRef Barrett Devin G, Merkel Timothy J, Christopher Luft J, Yousaf Muhammad N (2010) One-step syntheses of photocurable polyesters based on a renewable resource. Macromolecules 43:9660–9667CrossRef
27.
Zurück zum Zitat Teng Lijing, Nie Wangyan, Zhou Yifeng, Song Linyong, Chen Pengpeng (2015) Synthesis and characterization of star-shaped PLLA with sorbitol as core and its microspheres application in controlled drug release. J Appl Polym Sci 27:132 Teng Lijing, Nie Wangyan, Zhou Yifeng, Song Linyong, Chen Pengpeng (2015) Synthesis and characterization of star-shaped PLLA with sorbitol as core and its microspheres application in controlled drug release. J Appl Polym Sci 27:132
28.
Zurück zum Zitat Maniganda S, Sankar V, Nair JB, Raghu KG, Maiti KK (2014) A lysosome- targeted drug delivery system based on sorbitol backbone towards efficient cancer therapy. Org Biomol Chem 12(34):6564–6569PubMedCrossRef Maniganda S, Sankar V, Nair JB, Raghu KG, Maiti KK (2014) A lysosome- targeted drug delivery system based on sorbitol backbone towards efficient cancer therapy. Org Biomol Chem 12(34):6564–6569PubMedCrossRef
29.
Zurück zum Zitat Almeida MRH, Barbano EP, de Carvalho MF, Tulio PC, Carlos IA (2015) Copper-zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization. Appl Surf Sci 333:13CrossRef Almeida MRH, Barbano EP, de Carvalho MF, Tulio PC, Carlos IA (2015) Copper-zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization. Appl Surf Sci 333:13CrossRef
30.
Zurück zum Zitat Abdel Hamid Z, Abdel Aal A (2009) New environmentally friendly noncyanide alkaline electrolyte for copper electroplating. Surf Coat Technol 203:1360–1365CrossRef Abdel Hamid Z, Abdel Aal A (2009) New environmentally friendly noncyanide alkaline electrolyte for copper electroplating. Surf Coat Technol 203:1360–1365CrossRef
31.
Zurück zum Zitat Zhang Q, Wang T, Li B, Jiang T, Ma L, Zhang X, Liu Q (2012) Aqueous phase reforming of sorbitol to bio-gasoline over Ni/HZSM-5 catalyst. Appl Energy 97:509–513CrossRef Zhang Q, Wang T, Li B, Jiang T, Ma L, Zhang X, Liu Q (2012) Aqueous phase reforming of sorbitol to bio-gasoline over Ni/HZSM-5 catalyst. Appl Energy 97:509–513CrossRef
32.
Zurück zum Zitat Bozell Joseph J, Petersen Gene R (2015) Technology development for the production of biobased products from biorefnery carbohydrates the US department of energy’s ‘Top 10’’ revisited.’ Green Chemistry 12(4):539CrossRef Bozell Joseph J, Petersen Gene R (2015) Technology development for the production of biobased products from biorefnery carbohydrates the US department of energy’s ‘Top 10’’ revisited.’ Green Chemistry 12(4):539CrossRef
33.
Zurück zum Zitat Fukuoka A, Dhepe PL (2006) Catalytic conversion of cellulose into sugar alcohols. Angew Chem 118:5285–5287CrossRef Fukuoka A, Dhepe PL (2006) Catalytic conversion of cellulose into sugar alcohols. Angew Chem 118:5285–5287CrossRef
34.
Zurück zum Zitat Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Fukuoka A (2011) Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem 13(2):326–333CrossRef Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Fukuoka A (2011) Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem 13(2):326–333CrossRef
35.
Zurück zum Zitat Hilgert J, Meine N, Rinaldi R, Schüth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6(1):92–96CrossRef Hilgert J, Meine N, Rinaldi R, Schüth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6(1):92–96CrossRef
36.
Zurück zum Zitat Ding L-N, Wang A-Q, Zheng M-Y, Zhang T (2010) Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalyst. Chemsuschem 3:818–821PubMedCrossRef Ding L-N, Wang A-Q, Zheng M-Y, Zhang T (2010) Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalyst. Chemsuschem 3:818–821PubMedCrossRef
37.
Zurück zum Zitat Zhu Yinghuai, Kong Zhen Ning, Stubbs Ludger Paul, Lin Huang, Shen Shoucang, Anslyn Eric V, Maguire John A (2010) Conversion of cellulose to hexitols catalyzed by ionic liquid—stabilized ruthenium nanoparticles and a reversible binding agent. Chem Sus Chem 3:67–70CrossRef Zhu Yinghuai, Kong Zhen Ning, Stubbs Ludger Paul, Lin Huang, Shen Shoucang, Anslyn Eric V, Maguire John A (2010) Conversion of cellulose to hexitols catalyzed by ionic liquid—stabilized ruthenium nanoparticles and a reversible binding agent. Chem Sus Chem 3:67–70CrossRef
38.
Zurück zum Zitat Kobayashi H, Matsuhashi H, Komanoya T, Hara K, Fukuoka A (2011) Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts. Chem Commun 47(8):2366–2368CrossRef Kobayashi H, Matsuhashi H, Komanoya T, Hara K, Fukuoka A (2011) Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts. Chem Commun 47(8):2366–2368CrossRef
39.
Zurück zum Zitat Ogasawara Y, Itagaki S, Yamaguchi K, Mizuno N (2011) Saccharification of natural lignocellulose biomass and polysaccharides by highly negatively charged heteropolyacids in concentrated aqueous solution. Chemsuschem 4(4):519–525PubMedCrossRef Ogasawara Y, Itagaki S, Yamaguchi K, Mizuno N (2011) Saccharification of natural lignocellulose biomass and polysaccharides by highly negatively charged heteropolyacids in concentrated aqueous solution. Chemsuschem 4(4):519–525PubMedCrossRef
40.
Zurück zum Zitat Zhang J, Li J-B, Shu-Bin Wu, Liu Y (2013) Advances in the catalytic production and utilization of sorbitolInd. Eng Chem Res 52:11799–11815CrossRef Zhang J, Li J-B, Shu-Bin Wu, Liu Y (2013) Advances in the catalytic production and utilization of sorbitolInd. Eng Chem Res 52:11799–11815CrossRef
41.
Zurück zum Zitat Joung Woo Han (2012) Hyunjoo Lee, Direct conversion of cellulose into sorbitol using dualfunctionalized catalysts in neutral aqueous solution. Catal Commun 19:115–118CrossRef Joung Woo Han (2012) Hyunjoo Lee, Direct conversion of cellulose into sorbitol using dualfunctionalized catalysts in neutral aqueous solution. Catal Commun 19:115–118CrossRef
42.
Zurück zum Zitat Shrotri Abhijit, Tanksale Akshat, Beltramini Jorge Norberto, Gurav Hanmant, Chilukuri Satyanarayana V (2012) Conversion of cellulose to polyols over promoted nickel catalysts. Catal Sci Technol 2:1852–1858CrossRef Shrotri Abhijit, Tanksale Akshat, Beltramini Jorge Norberto, Gurav Hanmant, Chilukuri Satyanarayana V (2012) Conversion of cellulose to polyols over promoted nickel catalysts. Catal Sci Technol 2:1852–1858CrossRef
43.
Zurück zum Zitat Wang D, Niu W, Tan M, Mingbo Wu, Zheng X, Li Y, Tsubaki N (2014) Pt Nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol. Chemsuschem 7:1398–1406PubMedCrossRef Wang D, Niu W, Tan M, Mingbo Wu, Zheng X, Li Y, Tsubaki N (2014) Pt Nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol. Chemsuschem 7:1398–1406PubMedCrossRef
44.
Zurück zum Zitat Abhijeet Anand RD, Kulkarni V.V. Gite (2012) Preparation and properties of eco-friendly two pack PU coatings based on renewable source (sorbitol) and its property improvement by nano ZnO. Progress in Organic Coatings 74:764–767CrossRef Abhijeet Anand RD, Kulkarni V.V. Gite (2012) Preparation and properties of eco-friendly two pack PU coatings based on renewable source (sorbitol) and its property improvement by nano ZnO. Progress in Organic Coatings 74:764–767CrossRef
45.
Zurück zum Zitat Maria J (2011) Climent, Avelino Corma, Sara Iborra, Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem 13:520–540CrossRef Maria J (2011) Climent, Avelino Corma, Sara Iborra, Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem 13:520–540CrossRef
46.
Zurück zum Zitat Raquez J-M, Deleglise M, Lacrampe M-F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509CrossRef Raquez J-M, Deleglise M, Lacrampe M-F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509CrossRef
47.
Zurück zum Zitat Maisonneuve L, Lamarzelle O, Rix E (2015) Etienne grauhenri cramail, isocyanate- free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 115(22):12407–12439PubMedCrossRef Maisonneuve L, Lamarzelle O, Rix E (2015) Etienne grauhenri cramail, isocyanate- free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 115(22):12407–12439PubMedCrossRef
48.
Zurück zum Zitat Anand Abhijeet, Kulkarni Ravindra D, Patil Chandrashekhar K, Gite Vikas V (2013) Utilization of renewable bio-based resources viz sorbitol diol and diacid in the preparation of two pack PU anticorrosive coatings. J Name 00:1–3 Anand Abhijeet, Kulkarni Ravindra D, Patil Chandrashekhar K, Gite Vikas V (2013) Utilization of renewable bio-based resources viz sorbitol diol and diacid in the preparation of two pack PU anticorrosive coatings. J Name 00:1–3
49.
Zurück zum Zitat Mahmood N, Yuan Z, Schmidt J (2016) Chunbao (Charles) Xu, Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sustain Energy Rev 60:317–329CrossRef Mahmood N, Yuan Z, Schmidt J (2016) Chunbao (Charles) Xu, Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sustain Energy Rev 60:317–329CrossRef
50.
Zurück zum Zitat Ugarte L, Gomez-Fernandez S, Pena-Rodriuez C, Prociak A (2015) Maria Angeles Corcuera, Arantxa Eceiza, sorbitol as a chain extender of polyurethane prepolymers to prepare self-healable and robust polyhydroxyurethane elastomers. ACS Sustainable Chem Eng 3(12):3382–3387CrossRef Ugarte L, Gomez-Fernandez S, Pena-Rodriuez C, Prociak A (2015) Maria Angeles Corcuera, Arantxa Eceiza, sorbitol as a chain extender of polyurethane prepolymers to prepare self-healable and robust polyhydroxyurethane elastomers. ACS Sustainable Chem Eng 3(12):3382–3387CrossRef
51.
Zurück zum Zitat Brocas Anne-Laure, Mantzaridis Christos, Tunc Deniz, Carlotti Stephane (2015) Polyether synthesis: from activated or metal-free anionic ring-opening polymerization of epoxides to Functionalization. Prog Polym Sci 38(6):845–873CrossRef Brocas Anne-Laure, Mantzaridis Christos, Tunc Deniz, Carlotti Stephane (2015) Polyether synthesis: from activated or metal-free anionic ring-opening polymerization of epoxides to Functionalization. Prog Polym Sci 38(6):845–873CrossRef
52.
Zurück zum Zitat Bailosky Linda C, Bender Lynn M, Bode Daniel, Choudhery Riaz A, Craun Gary P, Gardner Kenneth J, Michalski Candice R, Rademacher Jude T, Stella Guy J, Telford David J (2016) Synthesis of polyether polyols with epoxidized soy bean oil. Prog Org Coat 76(12):1712–1719CrossRef Bailosky Linda C, Bender Lynn M, Bode Daniel, Choudhery Riaz A, Craun Gary P, Gardner Kenneth J, Michalski Candice R, Rademacher Jude T, Stella Guy J, Telford David J (2016) Synthesis of polyether polyols with epoxidized soy bean oil. Prog Org Coat 76(12):1712–1719CrossRef
53.
Zurück zum Zitat Dutta AS (2018). Polyurethane Foam Chemistry. Recycling of Polyurethane Foams. 17–27 Dutta AS (2018). Polyurethane Foam Chemistry. Recycling of Polyurethane Foams. 17–27
54.
Zurück zum Zitat Basterretxea Andere, Lopez Xabier, de Pariza Elena, Gabirondo Sara Marina, Martin Jaime, Etxeberria Agustin, Mecerreyes David, Sardon Haritz (2013) Synthesis and characterization of fully biobased copolyether polyols. Indus Eng Chem Res 20:214 Basterretxea Andere, Lopez Xabier, de Pariza Elena, Gabirondo Sara Marina, Martin Jaime, Etxeberria Agustin, Mecerreyes David, Sardon Haritz (2013) Synthesis and characterization of fully biobased copolyether polyols. Indus Eng Chem Res 20:214
55.
Zurück zum Zitat D.Kyriacos, Polyols for PU. All producers and plant capacities. June 2017. ISBN 9789078546313, (n.d.). D.Kyriacos, Polyols for PU. All producers and plant capacities. June 2017. ISBN 9789078546313, (n.d.).
56.
Zurück zum Zitat Tersac G (2007) Chemistry and technology of polyols for polyurethanes Shrewbury, UK. Polym Int 56(6):820–820CrossRef Tersac G (2007) Chemistry and technology of polyols for polyurethanes Shrewbury, UK. Polym Int 56(6):820–820CrossRef
57.
Zurück zum Zitat Furtwengler P, Averous L (2018) From D-sorbitol to five-membered bis(cyclo-carbonate) as a platform molecule for the synthesis of different original biobased chemicals and polymers. Sci Rep 8(1):215CrossRef Furtwengler P, Averous L (2018) From D-sorbitol to five-membered bis(cyclo-carbonate) as a platform molecule for the synthesis of different original biobased chemicals and polymers. Sci Rep 8(1):215CrossRef
58.
Zurück zum Zitat Mazurek-Budzyńska MM, Rokicki G, Drzewicz M, Guńka PA, Zachara J (2016) Bis(cyclic carbonate) based on d-mannitol, d-sorbitol and di(trimethylolpropane) in the synthesis of non-isocyanate poly(carbonate-urethane)s. Eur Polym J 84:799–811CrossRef Mazurek-Budzyńska MM, Rokicki G, Drzewicz M, Guńka PA, Zachara J (2016) Bis(cyclic carbonate) based on d-mannitol, d-sorbitol and di(trimethylolpropane) in the synthesis of non-isocyanate poly(carbonate-urethane)s. Eur Polym J 84:799–811CrossRef
59.
Zurück zum Zitat Gomez-Jimenez-Aberasturi O, Ochoa-Gomez JR (2017) New approaches to producing polyols from biomass. J Chem Technol Biotechnol 92(4):705–711CrossRef Gomez-Jimenez-Aberasturi O, Ochoa-Gomez JR (2017) New approaches to producing polyols from biomass. J Chem Technol Biotechnol 92(4):705–711CrossRef
60.
Zurück zum Zitat Michalowski S, Hebda E, Pielichowski K (2017) Thermal stability and flammability of polyurethane foams chemically reinforced with POSS. J Therm Anal Calorim 130(1):155–163CrossRef Michalowski S, Hebda E, Pielichowski K (2017) Thermal stability and flammability of polyurethane foams chemically reinforced with POSS. J Therm Anal Calorim 130(1):155–163CrossRef
61.
Zurück zum Zitat Kirpluks M, Kalnbunde D, Benes H, Cabulis U (2018) Natural oil based highly functional polyols as feedstock for rigid polyurethane foam thermal insulation. Ind Crops Prod 122:627–636CrossRef Kirpluks M, Kalnbunde D, Benes H, Cabulis U (2018) Natural oil based highly functional polyols as feedstock for rigid polyurethane foam thermal insulation. Ind Crops Prod 122:627–636CrossRef
62.
Zurück zum Zitat Ionescu M (2005) Polyether polyols for rigid polyurethane foams. In: Chemistry and technology of polyols for polyurethanes. Rapra Technology Limited. 343–4 Ionescu M (2005) Polyether polyols for rigid polyurethane foams. In: Chemistry and technology of polyols for polyurethanes. Rapra Technology Limited. 343–4
63.
Zurück zum Zitat Chatti S, Bortolussi M, Loupy A, Blais JC, Bogdal D, Majdoub M (2002) Efficient synthesis of polyethers from isosorbide by microwave-assisted phase transfer catalysis. Eur Polymer J 38:1851–1861CrossRef Chatti S, Bortolussi M, Loupy A, Blais JC, Bogdal D, Majdoub M (2002) Efficient synthesis of polyethers from isosorbide by microwave-assisted phase transfer catalysis. Eur Polymer J 38:1851–1861CrossRef
64.
Zurück zum Zitat Hammami N, Majdoub M, Habas J-P (2017) Structure-properties relationships in isosorbide-based polyacetals: Influence of linear or cyclic architecture on polymer physicochemical properties. Eur Polymer J 93:795–804CrossRef Hammami N, Majdoub M, Habas J-P (2017) Structure-properties relationships in isosorbide-based polyacetals: Influence of linear or cyclic architecture on polymer physicochemical properties. Eur Polymer J 93:795–804CrossRef
65.
Zurück zum Zitat Lukaszczyk J, Janicki B, Kozuch J, Wojdyla H (2013) Synthesis and characterization of low viscosity dimethacrylic resin based on isosorbide. J Appl Polym Sci 130(4):2514–2522CrossRef Lukaszczyk J, Janicki B, Kozuch J, Wojdyla H (2013) Synthesis and characterization of low viscosity dimethacrylic resin based on isosorbide. J Appl Polym Sci 130(4):2514–2522CrossRef
66.
Zurück zum Zitat Fleche G, Huchette M (1986) Isosorbide preparation properties and chemistry. Starch Starke 38(1):26–30CrossRef Fleche G, Huchette M (1986) Isosorbide preparation properties and chemistry. Starch Starke 38(1):26–30CrossRef
67.
Zurück zum Zitat Kamaruzaman MR, Jiang XX, Hu XD, Chin SY (2020) High yield of isosorbide production from sorbitol dehydration catalysed by amberlyst 36 under mild condition. Chem Eng J 388:124186CrossRef Kamaruzaman MR, Jiang XX, Hu XD, Chin SY (2020) High yield of isosorbide production from sorbitol dehydration catalysed by amberlyst 36 under mild condition. Chem Eng J 388:124186CrossRef
68.
Zurück zum Zitat Saxon DJ, Nasiri M, Mandal M, Maduskar S, Dauenhauer PJ, Cramer CJ, LaPointe AM, Reineke TM (2019) Architectural control of isosorbide-based polyethers via ring-opening polymerization. J Am Chem Soc 141:5107–5111PubMedCrossRef Saxon DJ, Nasiri M, Mandal M, Maduskar S, Dauenhauer PJ, Cramer CJ, LaPointe AM, Reineke TM (2019) Architectural control of isosorbide-based polyethers via ring-opening polymerization. J Am Chem Soc 141:5107–5111PubMedCrossRef
69.
Zurück zum Zitat Jiang Ting, Wang Wenjuan, Dinghua Yu, Huang Di, Wei Na, Yi Hu, Huang He (2018) Synthesis and characterization of polyurethane rigid foam architectural controls from polyether polyols with isosorbide as the bio-based starting agent. J Polym Res 25:140CrossRef Jiang Ting, Wang Wenjuan, Dinghua Yu, Huang Di, Wei Na, Yi Hu, Huang He (2018) Synthesis and characterization of polyurethane rigid foam architectural controls from polyether polyols with isosorbide as the bio-based starting agent. J Polym Res 25:140CrossRef
70.
Zurück zum Zitat Domanska Agata, Boczkowska Anna (2014) Biodegradable polyurethanes from crystalline prepolymers. Polym Degrad Stability 108:175181CrossRef Domanska Agata, Boczkowska Anna (2014) Biodegradable polyurethanes from crystalline prepolymers. Polym Degrad Stability 108:175181CrossRef
71.
Zurück zum Zitat Carothers WH (1971) Polymers and polyfunctionality. Trans Faraday Soc 67:P001–P002 Carothers WH (1971) Polymers and polyfunctionality. Trans Faraday Soc 67:P001–P002
72.
Zurück zum Zitat Carothers WH, Dorough GL, Natta FJ (1932) Studies of polymerization and ring formation X. The reversible polymerization of six-membered cyclic esters[J]. J Am Chem Soc 54(2):761–772CrossRef Carothers WH, Dorough GL, Natta FJ (1932) Studies of polymerization and ring formation X. The reversible polymerization of six-membered cyclic esters[J]. J Am Chem Soc 54(2):761–772CrossRef
73.
Zurück zum Zitat Carothers WH (1929) Studies on polymerization and ring formation. I An introduction to the general theory of condensation polymers[J]. J Am Chem Soc 51(8):2548–2559CrossRef Carothers WH (1929) Studies on polymerization and ring formation. I An introduction to the general theory of condensation polymers[J]. J Am Chem Soc 51(8):2548–2559CrossRef
74.
Zurück zum Zitat Bednarek M (2016) Branched aliphatic polyesters by ring-opening (co)polymerization. Prog Polym Sci 58:27–58CrossRef Bednarek M (2016) Branched aliphatic polyesters by ring-opening (co)polymerization. Prog Polym Sci 58:27–58CrossRef
75.
Zurück zum Zitat Benning Calvin J, Wilson Christopher L (2016) Method of making polyester composition.US patent 2863855. Benning Calvin J, Wilson Christopher L (2016) Method of making polyester composition.US patent 2863855.
76.
Zurück zum Zitat Gustini Liliana, Noordover Bart A.J., Gehrels Coen, Dietz Carin, Koning Cor E (2019) Enzymatic synthesis and preliminary evaluation as coating of sorbitol-based hydroxy-functional polyesters with controlled molecular weights. Eur Polym J 67:459–475CrossRef Gustini Liliana, Noordover Bart A.J., Gehrels Coen, Dietz Carin, Koning Cor E (2019) Enzymatic synthesis and preliminary evaluation as coating of sorbitol-based hydroxy-functional polyesters with controlled molecular weights. Eur Polym J 67:459–475CrossRef
77.
Zurück zum Zitat Furtwengler P, Averous L (2018) Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem 9:4258–4287CrossRef Furtwengler P, Averous L (2018) Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem 9:4258–4287CrossRef
78.
Zurück zum Zitat Furtwengler P, Perrin R, Redl A et al (2017) Synthesis and characterization of polyurethane foams derived of fully renewable polyester polyols from sorbitol[J]. Eur Polymer J 97:319–327CrossRef Furtwengler P, Perrin R, Redl A et al (2017) Synthesis and characterization of polyurethane foams derived of fully renewable polyester polyols from sorbitol[J]. Eur Polymer J 97:319–327CrossRef
79.
Zurück zum Zitat Khanderay JC, Gite VV (2019) Fully biobased polyester polyols derived from renewable resources toward preparation of polyurethane and their application for coatings. J Appl Polym Sci 47:558 Khanderay JC, Gite VV (2019) Fully biobased polyester polyols derived from renewable resources toward preparation of polyurethane and their application for coatings. J Appl Polym Sci 47:558
80.
Zurück zum Zitat Kirchmeyer Stephan, Muller Hanns-Peter, Ullrich Martin, Liesenfelder Ulrich (2017) Homogeneously mixing polyisocyanate zerewitinoff active hydrogen compound and chain extender for condensation polymerization continuous degassing and extrusion. US patent 64:17312 Kirchmeyer Stephan, Muller Hanns-Peter, Ullrich Martin, Liesenfelder Ulrich (2017) Homogeneously mixing polyisocyanate zerewitinoff active hydrogen compound and chain extender for condensation polymerization continuous degassing and extrusion. US patent 64:17312
81.
Zurück zum Zitat Yamasaki S, Nishiguchi D, Kojio K et al (2007) Effects of polymerization method on structure and properties of thermoplastic polyurethanes. J Polym Sci, Part B: Polym Phys 45:800–814CrossRef Yamasaki S, Nishiguchi D, Kojio K et al (2007) Effects of polymerization method on structure and properties of thermoplastic polyurethanes. J Polym Sci, Part B: Polym Phys 45:800–814CrossRef
82.
Zurück zum Zitat Oprea S, Timpu D, Oprea V (2019) Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures. J Polym Res 26:117CrossRef Oprea S, Timpu D, Oprea V (2019) Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures. J Polym Res 26:117CrossRef
83.
Zurück zum Zitat Chun Byoung Chul, Cha Sang Hyuk, Park Chul, Chung Yong-Chan, Park Myung Ju, Cho Jae Whan (2003) Dynamic Mechanical Properties of Sandwich-Structured Epoxy Beam Composites Containing Poly(ethyleneterephthalate)/Poly (ethyleneglycol)copolymer with shape memory effect. J Appl Polym Sci 90:3141–3149CrossRef Chun Byoung Chul, Cha Sang Hyuk, Park Chul, Chung Yong-Chan, Park Myung Ju, Cho Jae Whan (2003) Dynamic Mechanical Properties of Sandwich-Structured Epoxy Beam Composites Containing Poly(ethyleneterephthalate)/Poly (ethyleneglycol)copolymer with shape memory effect. J Appl Polym Sci 90:3141–3149CrossRef
84.
Zurück zum Zitat Chung Yong-Chan, Choi Jung Hoon, Chun Byoung Chul (2008) Shape-memory effects of polyurethane copolymer cross-linked by dextrin. J Mater Sci 43:6366–6373CrossRef Chung Yong-Chan, Choi Jung Hoon, Chun Byoung Chul (2008) Shape-memory effects of polyurethane copolymer cross-linked by dextrin. J Mater Sci 43:6366–6373CrossRef
85.
Zurück zum Zitat Chung Yong-Chan, Choi Jae Won, Kim Ha Youn, Chun Byoung Chul (2012) Low temperature shape recovery effect of polyurethane copolymer grafted with pendant n-butyl group. Fibers Polym 13:8–15CrossRef Chung Yong-Chan, Choi Jae Won, Kim Ha Youn, Chun Byoung Chul (2012) Low temperature shape recovery effect of polyurethane copolymer grafted with pendant n-butyl group. Fibers Polym 13:8–15CrossRef
86.
Zurück zum Zitat Guo A, Javni I, Petrovic Z (2000) Rigid polyurethane foams based on soybean oil. J Appl Polym Sci 77:467–473CrossRef Guo A, Javni I, Petrovic Z (2000) Rigid polyurethane foams based on soybean oil. J Appl Polym Sci 77:467–473CrossRef
87.
Zurück zum Zitat Blazek K, Datta J (2019) Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Critical Rev Environ Sci Technol 2:1–39 Blazek K, Datta J (2019) Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Critical Rev Environ Sci Technol 2:1–39
88.
Zurück zum Zitat Dyer E, Scott H (1957) The preparation of polymeric and cyclic urethans and ureas from ethylene carbonate and amines. J Am Chem Soc 79(3):672–675CrossRef Dyer E, Scott H (1957) The preparation of polymeric and cyclic urethans and ureas from ethylene carbonate and amines. J Am Chem Soc 79(3):672–675CrossRef
89.
Zurück zum Zitat Ghasemlou M, Daver F, Ivanova EP, Adhikari B (2019) Bio-based routes to synthesize cyclic carbonates and polyamines precursors of non-isocyanate polyurethanes: a review. Eur Polymer J 118:668–684CrossRef Ghasemlou M, Daver F, Ivanova EP, Adhikari B (2019) Bio-based routes to synthesize cyclic carbonates and polyamines precursors of non-isocyanate polyurethanes: a review. Eur Polymer J 118:668–684CrossRef
90.
Zurück zum Zitat Zhijun Wu, Tang Liuyan, Dai Jingtao, Jinqing Qu (2016) Synthesis and properties of fluorinated nonisocyanate polyurethanes coatings with good hydrophobic and oleophobic properties. J Coat Technol Res 12:125 Zhijun Wu, Tang Liuyan, Dai Jingtao, Jinqing Qu (2016) Synthesis and properties of fluorinated nonisocyanate polyurethanes coatings with good hydrophobic and oleophobic properties. J Coat Technol Res 12:125
91.
Zurück zum Zitat Mazurek-Budzynfska Magdalena M, Rokicki Gabriel, Drzewicz Mateusz, Piotr A, Janusz Z (2016) Bis(cyclic carbonate) based on D-mannitol, D-sorbitol and di(trimethylolpropane) in the synthesis of non-isocyanate poly(carbonate-urethane)s. Eur Polym J 84:799–811CrossRef Mazurek-Budzynfska Magdalena M, Rokicki Gabriel, Drzewicz Mateusz, Piotr A, Janusz Z (2016) Bis(cyclic carbonate) based on D-mannitol, D-sorbitol and di(trimethylolpropane) in the synthesis of non-isocyanate poly(carbonate-urethane)s. Eur Polym J 84:799–811CrossRef
Metadaten
Titel
The preparation of sorbitol and its application in polyurethane: a review
verfasst von
Jiacheng Xiang
Saisai Yang
Jing Zhang
Jinjing Wu
Yinlin Shao
Zefeng Wang
Minghua Yang
Publikationsdatum
11.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 4/2022
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-021-03639-4

Weitere Artikel der Ausgabe 4/2022

Polymer Bulletin 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.