Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2024

20.02.2024 | ORIGINAL ARTICLE

The study of different flow fields at the corner during the electrochemical machining of internal gear

verfasst von: Junfei Li, Shuaizhe Tan, Guixian Liu, Guokang Su, Yongjun Zhang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a new method of electrochemical machining with sheet metal electrode (SME-ECM) is innovatively proposed to meet the challenges of internal gear machining. During the electrochemical machining of internal gears, the distribution of electrolyte flow around the corner area of the internal gear is a critical problem, because the dimensional accuracy at the corner directly determines the sidewall accuracy of the internal gear. In view of the phenomena such as stray flow field, gas accumulation in the machining corner area, and uneven removal in different machining areas during the machining process of internal gears, this paper carries out theoretical analysis and experimental investigation on the three flow field models of forward flow (Ff), reverse flow (Rf), and lateral flow (Lf) through multi-physics coupling simulation, flow field observation, and machining experiment. The processing characteristics of the corner area under the influence of different factors (flow field model, processing stage, flow rate, gas distribution) are obtained. The results show that under the same electrolyte pressure, the Lf model has the least residual gas in the corner region, with a gas content of less than 1.5e-5, and the machining current could reach 2.92 A, which has a significant advantage in the processing uniformity, indicating that the Lf flow field model has the advantage of electrochemical machining of internal gears. The research in this paper lays a theoretical foundation for further electrochemical machining of internal gears.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tarapanov A, Anisimov R, Kanatnikov N, Pilipenko A (2016) Improving efficiency of gear shaping of wheels with internal non-involute gears. IOP Conf Ser Mater Sci Eng 127(1):12052–12059CrossRef Tarapanov A, Anisimov R, Kanatnikov N, Pilipenko A (2016) Improving efficiency of gear shaping of wheels with internal non-involute gears. IOP Conf Ser Mater Sci Eng 127(1):12052–12059CrossRef
2.
Zurück zum Zitat Sutherland JW, Salisbury EJ, Hoge FW (1997) A model for the cutting force system in the gear broaching process. Int J Mach Tools Manuf 37(10):1409–1421CrossRef Sutherland JW, Salisbury EJ, Hoge FW (1997) A model for the cutting force system in the gear broaching process. Int J Mach Tools Manuf 37(10):1409–1421CrossRef
3.
Zurück zum Zitat Klocke F, Zeis M, Klink A, Veselovac D (2013) Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components. Procedia CIRP 6:368–372CrossRef Klocke F, Zeis M, Klink A, Veselovac D (2013) Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components. Procedia CIRP 6:368–372CrossRef
4.
Zurück zum Zitat Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26CrossRef Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26CrossRef
5.
Zurück zum Zitat Hong HC, Sun Y, Lin SC, Kao PS (2003) A material removal analysis of electrochemical machining using flat-end cathode. J Mater Process Technol 140:264–268CrossRef Hong HC, Sun Y, Lin SC, Kao PS (2003) A material removal analysis of electrochemical machining using flat-end cathode. J Mater Process Technol 140:264–268CrossRef
6.
Zurück zum Zitat Goud M, Sharma AK, Jawalkar C (2016) A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate. Precis Eng 45:1–17CrossRef Goud M, Sharma AK, Jawalkar C (2016) A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate. Precis Eng 45:1–17CrossRef
7.
Zurück zum Zitat Liu GX, Zhang YJ, Natsu W (2019) Influence of electrolyte flow mode on characteristics of electrochemical machining with electrolyte suction tool. Int J Mach Tools Manuf 142:66–75CrossRef Liu GX, Zhang YJ, Natsu W (2019) Influence of electrolyte flow mode on characteristics of electrochemical machining with electrolyte suction tool. Int J Mach Tools Manuf 142:66–75CrossRef
8.
Zurück zum Zitat Liu HB, Pan LM, Wen J (2016) Numerical simulation of hydrogen bubble growth at an electrode surface. Can J Chem Eng 94(1):192–199CrossRef Liu HB, Pan LM, Wen J (2016) Numerical simulation of hydrogen bubble growth at an electrode surface. Can J Chem Eng 94(1):192–199CrossRef
9.
Zurück zum Zitat Jo CH, Kim BH, Chu CN (2009) Micro electrochemical machining for complex internal micro features. CIRP Ann Manuf Technol 58:181–184CrossRef Jo CH, Kim BH, Chu CN (2009) Micro electrochemical machining for complex internal micro features. CIRP Ann Manuf Technol 58:181–184CrossRef
10.
Zurück zum Zitat Zhu D, Gu ZZ, Xue TY, Ao L (2017) Simulation and experimental investigation on a dynamic lateral flow mode in trepanning electrochemical machining. Chin J Aeronaut 30(4):1624–1630CrossRef Zhu D, Gu ZZ, Xue TY, Ao L (2017) Simulation and experimental investigation on a dynamic lateral flow mode in trepanning electrochemical machining. Chin J Aeronaut 30(4):1624–1630CrossRef
11.
Zurück zum Zitat Wang F, Zhao JS, Yanming L, Yang ZW, He YF, Tian ZJ (2018) Experimental research on improving accuracy of electrochemical machining of deep narrow grooves. Int J Adv Manuf Technol 96(9-12):3217–3225CrossRef Wang F, Zhao JS, Yanming L, Yang ZW, He YF, Tian ZJ (2018) Experimental research on improving accuracy of electrochemical machining of deep narrow grooves. Int J Adv Manuf Technol 96(9-12):3217–3225CrossRef
12.
Zurück zum Zitat Qu NS, Hu Y, Zhu D, Xu ZY (2014) Electrochemical machining of blisk channels with progressive-pressure electrolyte flow. Mater Manuf Process 29(5):572–578CrossRef Qu NS, Hu Y, Zhu D, Xu ZY (2014) Electrochemical machining of blisk channels with progressive-pressure electrolyte flow. Mater Manuf Process 29(5):572–578CrossRef
13.
Zurück zum Zitat Zhang CF, Ai HH, Yan ZH, Jiang XG, Cheng PY, Hu YW, Tian H (2020) Cathode optimization and multi-physics simulation of pulse electrochemical machining for small inner-walled ring grooves. Int J Adv Manuf Technol 106(1-2):401–416CrossRef Zhang CF, Ai HH, Yan ZH, Jiang XG, Cheng PY, Hu YW, Tian H (2020) Cathode optimization and multi-physics simulation of pulse electrochemical machining for small inner-walled ring grooves. Int J Adv Manuf Technol 106(1-2):401–416CrossRef
14.
Zurück zum Zitat Paczkowski T, Troszyński A (2018) The effect of multidirectional vibration on electrochemical machining. Procedia Manuf 22:41–48CrossRef Paczkowski T, Troszyński A (2018) The effect of multidirectional vibration on electrochemical machining. Procedia Manuf 22:41–48CrossRef
15.
Zurück zum Zitat Tang L, Feng X, Zhai KG, Ji Y, Wang Z, Lei QB, Ren L (2019) Gap flow field simulation and experiment of electrochemical machining special-shaped inner spiral tube. Int J Adv Manuf Technol 100(9-12):2485–2493CrossRef Tang L, Feng X, Zhai KG, Ji Y, Wang Z, Lei QB, Ren L (2019) Gap flow field simulation and experiment of electrochemical machining special-shaped inner spiral tube. Int J Adv Manuf Technol 100(9-12):2485–2493CrossRef
16.
Zurück zum Zitat Fujisawa T, Inaba K, Yamamoto M, Kato D (2008) Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade. J Fluids Eng Trans ASME 130(8) Fujisawa T, Inaba K, Yamamoto M, Kato D (2008) Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade. J Fluids Eng Trans ASME 130(8)
17.
Zurück zum Zitat Schaarschmidt I, Zinecker M, Hackert-Oschätzchen M, Meichsner G, Schuber A (2017) Multiscale multiphysics simulation of a pulsed electrochemical machining process with oscillating cathode for microstructuring of impact extrusion punches. Procedia CIRP 58:257–262CrossRef Schaarschmidt I, Zinecker M, Hackert-Oschätzchen M, Meichsner G, Schuber A (2017) Multiscale multiphysics simulation of a pulsed electrochemical machining process with oscillating cathode for microstructuring of impact extrusion punches. Procedia CIRP 58:257–262CrossRef
18.
Zurück zum Zitat Lee YM, Lee SJ, Lee CY, Chang DY (2009) The multiphysics analysis of the metallic bipolar plate by the electrochemical micro-machining fabrication process. J Power Sources 193(1):227–232CrossRef Lee YM, Lee SJ, Lee CY, Chang DY (2009) The multiphysics analysis of the metallic bipolar plate by the electrochemical micro-machining fabrication process. J Power Sources 193(1):227–232CrossRef
19.
Zurück zum Zitat Wang MH, Tong WJ, Qiu GZ, Xu XF, Speidel A, Mitchell-Smith J (2019) Multiphysics study in air-shielding electrochemical micromachining. J Manuf Process 43:124–135CrossRef Wang MH, Tong WJ, Qiu GZ, Xu XF, Speidel A, Mitchell-Smith J (2019) Multiphysics study in air-shielding electrochemical micromachining. J Manuf Process 43:124–135CrossRef
20.
Zurück zum Zitat Fang XL, Qu NS, Zhang YD, Xu ZY, Zhu D (2014) Effects of pulsating electrolyte flow in electrochemical machining. J Mater Process Technol 214(1):36–43CrossRef Fang XL, Qu NS, Zhang YD, Xu ZY, Zhu D (2014) Effects of pulsating electrolyte flow in electrochemical machining. J Mater Process Technol 214(1):36–43CrossRef
21.
Zurück zum Zitat Hu XY, Zhu D, Li JB, Gu ZZ (2019) Flow field research on electrochemical machining with gas film insulation. J Mater Process Technol 267:247–256CrossRef Hu XY, Zhu D, Li JB, Gu ZZ (2019) Flow field research on electrochemical machining with gas film insulation. J Mater Process Technol 267:247–256CrossRef
22.
Zurück zum Zitat Wang GQ, Li HS, Qu NS, Zhu D (2017) Improvement of electrolyte flow field during through-mask electrochemical machining by changing mask wall angle. J Manuf Process 25:246–252CrossRef Wang GQ, Li HS, Qu NS, Zhu D (2017) Improvement of electrolyte flow field during through-mask electrochemical machining by changing mask wall angle. J Manuf Process 25:246–252CrossRef
23.
Zurück zum Zitat Luo HP, Mi DH, Natsu W (2019) Characteristics of ECM polishing influenced by workpiece corner feature and electrolyte flow. Precis Eng 56:330–342CrossRef Luo HP, Mi DH, Natsu W (2019) Characteristics of ECM polishing influenced by workpiece corner feature and electrolyte flow. Precis Eng 56:330–342CrossRef
24.
Zurück zum Zitat Valiantzas JD (2008) Explicit power formula for the Darcy–Weisbach pipe flow equation: application in optimal pipeline design. J Irrig Drain Eng 134(4):454–461CrossRef Valiantzas JD (2008) Explicit power formula for the Darcy–Weisbach pipe flow equation: application in optimal pipeline design. J Irrig Drain Eng 134(4):454–461CrossRef
Metadaten
Titel
The study of different flow fields at the corner during the electrochemical machining of internal gear
verfasst von
Junfei Li
Shuaizhe Tan
Guixian Liu
Guokang Su
Yongjun Zhang
Publikationsdatum
20.02.2024
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2024
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-024-13257-9

Weitere Artikel der Ausgabe 7-8/2024

The International Journal of Advanced Manufacturing Technology 7-8/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.