Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2022

06.02.2022 | ORIGINAL ARTICLE

Thermal behavior simulation and stabilization for a mechanical spindle with external cooler across grease-coated interface

verfasst von: Liang Zhao, Mohan Lei, Hongdi Ren, Jinshi Wang, Shuai Wang, Ben Q. Li, Jun Yang, Xuesong Mei

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spindles in precision boring machine often work in low speed and heavy load without internal cooling, and the thermal error is non-negligible. An external cooling system was proposed, and the effectiveness of the proposed scheme needs to be preliminarily verified by simulation before building the cooling system. Thermal simulations of the spindle with an external cooler require calculating the thermal resistance of the thermal grease-coated interface between the cooler and spindle. Models describing the contact thermal resistance and total thermal resistance for metal contact filled with silicone grease based on solid–liquid interface force equivalence were described in this paper, and experiments were also conducted to verify the accuracy of these models. The contact thermal resistances between the cast iron/copper and silicone grease on flat or cambered surfaces were calculated, and the bulk thermal resistance of the silicone grease layer was calculated. The total heat transferred between the cooler and the silicone grease-coated interface of the spindle was calculated. Heat transfer and heat generation in the spindle were calculated, and a finite element model was established to verify the effectiveness of the designed external cooling scheme. Finally, the proposed cooling scheme is developed, and quantitative analysis for experiments show that the constant temperature cooling (20 °C, 18 °C, and 16 °C) significantly improved the thermal error stability, hence decreases the time of reaching thermal equilibrium by 42.95%, 39.57%, and 39.84% under a rotation speed of 1500 rpm, and 23.94%, 51.21%, and 42.07% under a rotation speed 3000 rpm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mayr J et al (2012) Thermal issues in machine tools. CIRP Ann 61(2):771–791CrossRef Mayr J et al (2012) Thermal issues in machine tools. CIRP Ann 61(2):771–791CrossRef
2.
Zurück zum Zitat Shi H et al (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. Int J Mach Tools Manuf 97:60–71CrossRef Shi H et al (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. Int J Mach Tools Manuf 97:60–71CrossRef
3.
Zurück zum Zitat Li Y et al (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38CrossRef Li Y et al (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38CrossRef
4.
Zurück zum Zitat Ge Z, Ding X (2018) Design of thermal error control system for high-speed motorized spindle based on thermal contraction of CFRP. Int J Mach Tools Manuf 125:99–111CrossRef Ge Z, Ding X (2018) Design of thermal error control system for high-speed motorized spindle based on thermal contraction of CFRP. Int J Mach Tools Manuf 125:99–111CrossRef
5.
Zurück zum Zitat Donmez MA, Hahn MH, Soons JA (2007) A novel cooling system to reduce thermally-induced errors of machine tools. CIRP Ann 56(1):521–524CrossRef Donmez MA, Hahn MH, Soons JA (2007) A novel cooling system to reduce thermally-induced errors of machine tools. CIRP Ann 56(1):521–524CrossRef
6.
Zurück zum Zitat Dornfeld D, Lee DE (2008) Machine design for precision manufacturing. Springer US Dornfeld D, Lee DE (2008) Machine design for precision manufacturing. Springer US
7.
Zurück zum Zitat Xia C et al (2015) Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Appl Therm Eng 90:1032–1042CrossRef Xia C et al (2015) Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Appl Therm Eng 90:1032–1042CrossRef
8.
Zurück zum Zitat Liu T et al (2015) A differentiated multi-loops bath recirculation system for precision machine tools. Appl Therm Eng 76:54–63CrossRef Liu T et al (2015) A differentiated multi-loops bath recirculation system for precision machine tools. Appl Therm Eng 76:54–63CrossRef
9.
Zurück zum Zitat Bossmanns B, Tu JF (2001) A power flow model for high speed motorized spindles - heat generation characterization. J Manuf Sci Eng Trans Asme 123(3):494–505CrossRef Bossmanns B, Tu JF (2001) A power flow model for high speed motorized spindles - heat generation characterization. J Manuf Sci Eng Trans Asme 123(3):494–505CrossRef
10.
Zurück zum Zitat Madhusudana CV (1996) Mechanical engineering series (Berlin, Germany). Springer-Verlag, New York Madhusudana CV (1996) Mechanical engineering series (Berlin, Germany). Springer-Verlag, New York
11.
Zurück zum Zitat Bajracharya I et al (2013) Characterization of thermal contact resistance doped with thermal interface material. J Korean Soc Precisi Eng 30(9):943–950CrossRef Bajracharya I et al (2013) Characterization of thermal contact resistance doped with thermal interface material. J Korean Soc Precisi Eng 30(9):943–950CrossRef
12.
Zurück zum Zitat Prasher RS (2001) Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials. J Heat Transfer 123(5):969–975CrossRef Prasher RS (2001) Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials. J Heat Transfer 123(5):969–975CrossRef
13.
Zurück zum Zitat Yuan C et al (2015) An improved model for predicting thermal contact resistance at liquid–solid interface. Int J Heat Mass Transf 80:398–406CrossRef Yuan C et al (2015) An improved model for predicting thermal contact resistance at liquid–solid interface. Int J Heat Mass Transf 80:398–406CrossRef
14.
Zurück zum Zitat Hamasaiid A et al (2011) A predictive model for the thermal contact resistance at liquid–solid interfaces: analytical developments and validation. Int J Therm Sci 50(8):1445–1459CrossRef Hamasaiid A et al (2011) A predictive model for the thermal contact resistance at liquid–solid interfaces: analytical developments and validation. Int J Therm Sci 50(8):1445–1459CrossRef
15.
Zurück zum Zitat Hamasaiid A et al (2010) A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting. Int J Therm Sci 49(2):365–372CrossRef Hamasaiid A et al (2010) A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting. Int J Therm Sci 49(2):365–372CrossRef
16.
Zurück zum Zitat Ma C et al (2015) Simulation and experimental study on the thermally induced deformations of high-speed spindle system. Appl Therm Eng 86:251–268CrossRef Ma C et al (2015) Simulation and experimental study on the thermally induced deformations of high-speed spindle system. Appl Therm Eng 86:251–268CrossRef
17.
Zurück zum Zitat Yang J et al (2015) Experiments and simulation of thermal behaviors of the dual-drive servo feed system. Chin J Mech Eng 28(1):76–87CrossRef Yang J et al (2015) Experiments and simulation of thermal behaviors of the dual-drive servo feed system. Chin J Mech Eng 28(1):76–87CrossRef
18.
Zurück zum Zitat Prasher RS et al (2003) Thermal resistance of particle laden polymeric thermal interface materials. In ASME 2003 International Mechanical Engineering Congress and Exposition. Am Soc Mech Eng Prasher RS et al (2003) Thermal resistance of particle laden polymeric thermal interface materials. In ASME 2003 International Mechanical Engineering Congress and Exposition. Am Soc Mech Eng
19.
Zurück zum Zitat Yuan C, Peng Z, Yan X (2005) Surface characterization using wavelet theory and confocal laser scanning microscopy. J Tribol 127(2):394–404CrossRef Yuan C, Peng Z, Yan X (2005) Surface characterization using wavelet theory and confocal laser scanning microscopy. J Tribol 127(2):394–404CrossRef
20.
Zurück zum Zitat Prasher RS et al (2002) Rheological study of micro particle laden polymeric thermal interface materials: part 2 — modeling. 3638X:53–59 Prasher RS et al (2002) Rheological study of micro particle laden polymeric thermal interface materials: part 2 — modeling. 3638X:53–59
21.
Zurück zum Zitat Jianbin Z, Hongwei L (2012) Thermal performance analysis for the machine tool’s spindle. IEEE Conf Ind Electr Appl (ICIEA) Jianbin Z, Hongwei L (2012) Thermal performance analysis for the machine tool’s spindle. IEEE Conf Ind Electr Appl (ICIEA)
Metadaten
Titel
Thermal behavior simulation and stabilization for a mechanical spindle with external cooler across grease-coated interface
verfasst von
Liang Zhao
Mohan Lei
Hongdi Ren
Jinshi Wang
Shuai Wang
Ben Q. Li
Jun Yang
Xuesong Mei
Publikationsdatum
06.02.2022
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2022
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-08775-3

Weitere Artikel der Ausgabe 1-2/2022

The International Journal of Advanced Manufacturing Technology 1-2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.