Skip to main content
Erschienen in: Journal of Materials Science 2/2017

04.10.2016 | Original Paper

Thermal expansion of bulk nanostructured n-type SiGe nanocomposite from 300 to 1400 K

verfasst von: Lydia Pavlova, Yury Shtern, Elena Kirilenko

Erschienen in: Journal of Materials Science | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of the nanostructured nanocomposites aims to improve the peak figure of merit (ZT) values of thermoelectric alloys. In addition to ZT, the coefficients of the thermal linear expansion (CTLE) of these alloys are equally important for estimating stresses imposed by the thermal cycling inherent to waste heat recovery operations. In this study, we report the calculated “technical alpha”, i.e., the experimental mean CTLE values for the bulk nanostructured n-type Si80Ge20 alloy doped with phosphorus at 298–1220 K. The elemental composition of the spark plasma sintered (SPS)-specimen after thermal cycling in the infrared furnace is characterized by means of AES spectroscopy in combination with ion sputtering. Small amounts of contaminants, such as Fe and O, and large losses of P are detected. Elongations have been measured using ULVAC DL-1500-RH high-speed dilatometer with various rates of heating and cooling. Anomalous thermal behavior of the n-type Si80Ge20(P2.2) composite is observed at high temperatures. Previously, the same anomaly was detected in the temperature dependence of the elongation of pure silicon. There are some discrepancies between our measurements of the thermal expansion of nanostructured n-SiGe composites and those reported in the literature. Moreover, in this study, SiGe solid solution is also studied to verify the additive scheme and to explore deviations from it for predicting CTLE values at higher temperature on the basis of the properties of the pure components. These calculations of the CTLE of undoped SiGe alloys match with the results of the dilatometric and X-ray experiments conducted during the period 1964–1987 and the calculations based on other theoretical approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dresselhaus M, Chen G, Ren Z, Fleurial J-P, Gogna P, Tang MY, Vashaee D, Lee H, Wang X, Joshi G (2007) Nanocomposites to enhance ZT in thermoelectrics. In: MRS Proceedings, Cambridge University Press Dresselhaus M, Chen G, Ren Z, Fleurial J-P, Gogna P, Tang MY, Vashaee D, Lee H, Wang X, Joshi G (2007) Nanocomposites to enhance ZT in thermoelectrics. In: MRS Proceedings, Cambridge University Press
2.
Zurück zum Zitat Abudakka M, Nozariasbmarz A, Tayebi L, Krasisnki JS, Vashaee D (2015) Development of inexpensive SiGe–FeSi2 thermoelectric nanocomposites. Energy Harvest Syst 2(1–2):47–53 Abudakka M, Nozariasbmarz A, Tayebi L, Krasisnki JS, Vashaee D (2015) Development of inexpensive SiGe–FeSi2 thermoelectric nanocomposites. Energy Harvest Syst 2(1–2):47–53
3.
Zurück zum Zitat Bathula S, Gahtori B, Jayasimhadri M, Tripathy S, Tyagi K, Srivastava A, Dhar A (2014) Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering. Appl Phys Lett 105(6):061902CrossRef Bathula S, Gahtori B, Jayasimhadri M, Tripathy S, Tyagi K, Srivastava A, Dhar A (2014) Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering. Appl Phys Lett 105(6):061902CrossRef
4.
Zurück zum Zitat Basu R, Bhattacharya S, Bhatt R, Roy M, Ahmad S, Singh A, Navaneethan M, Hayakawa Y, Aswal D, Gupta S (2014) Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys. J Mater Chem A 2(19):6922–6930CrossRef Basu R, Bhattacharya S, Bhatt R, Roy M, Ahmad S, Singh A, Navaneethan M, Hayakawa Y, Aswal D, Gupta S (2014) Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys. J Mater Chem A 2(19):6922–6930CrossRef
5.
Zurück zum Zitat Bhandari C, Rowe D (1980) Silicon–germanium alloys as high-temperature thermoelectric materials. Contemp Phys 21(3):219–242CrossRef Bhandari C, Rowe D (1980) Silicon–germanium alloys as high-temperature thermoelectric materials. Contemp Phys 21(3):219–242CrossRef
6.
Zurück zum Zitat Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D, Opeil C, Dresselhaus M, Chen G, Ren Z (2012) Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett 12(4):2077–2082CrossRef Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D, Opeil C, Dresselhaus M, Chen G, Ren Z (2012) Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett 12(4):2077–2082CrossRef
7.
Zurück zum Zitat Minnich A, Dresselhaus M, Ren Z, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479CrossRef Minnich A, Dresselhaus M, Ren Z, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479CrossRef
8.
Zurück zum Zitat Schmidt RD, Case ED, Ni JE, Sakamoto JS, Trejo RM, Lara-Curzio E, Payzant EA, Kirkham MJ, Peascoe-Meisner RA (2012) The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials. Philos Mag 92(10):1261–1286CrossRef Schmidt RD, Case ED, Ni JE, Sakamoto JS, Trejo RM, Lara-Curzio E, Payzant EA, Kirkham MJ, Peascoe-Meisner RA (2012) The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials. Philos Mag 92(10):1261–1286CrossRef
9.
Zurück zum Zitat Ni JE, Case ED, Schmidt RD, Wu C-I, Hogan TP, Trejo RM, Kirkham MJ, Lara-Curzio E, Kanatzidis MG (2013) The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating. J Mater Sci 48(18):6233–6244. doi:10.1007/s10853-013-7421-7 CrossRef Ni JE, Case ED, Schmidt RD, Wu C-I, Hogan TP, Trejo RM, Kirkham MJ, Lara-Curzio E, Kanatzidis MG (2013) The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating. J Mater Sci 48(18):6233–6244. doi:10.​1007/​s10853-013-7421-7 CrossRef
10.
Zurück zum Zitat Koch CC (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater 9(1):13–22CrossRef Koch CC (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater 9(1):13–22CrossRef
11.
Zurück zum Zitat Thompson D, Hitchcock D, Lahwal A, Tritt T (2012) Single-element spark plasma sintering of silicon germanium. Emerg Mater Res 1(6):299–305CrossRef Thompson D, Hitchcock D, Lahwal A, Tritt T (2012) Single-element spark plasma sintering of silicon germanium. Emerg Mater Res 1(6):299–305CrossRef
12.
Zurück zum Zitat Lee Y, Hwang GS (2013) Microsegregation effects on the thermal conductivity of silicon-germanium alloys. J Appl Phys 114(17):174910CrossRef Lee Y, Hwang GS (2013) Microsegregation effects on the thermal conductivity of silicon-germanium alloys. J Appl Phys 114(17):174910CrossRef
13.
Zurück zum Zitat Qin W, Ast D, Kamins T (2000) Segregation of phosphorus and germanium to grain boundaries in chemical vapor deposited silicon-germanium films determined by scanning transmission electron microscopy. J Electron Mater 29(8):L13–L17CrossRef Qin W, Ast D, Kamins T (2000) Segregation of phosphorus and germanium to grain boundaries in chemical vapor deposited silicon-germanium films determined by scanning transmission electron microscopy. J Electron Mater 29(8):L13–L17CrossRef
15.
Zurück zum Zitat Ravi V, Firdosy S, Caillat T, Brandon E, Van Der Walde K, Maricic L, Sayir A (2009) Thermal expansion studies of selected high-temperature thermoelectric materials. J Electron Mater 38(7):1433–1442CrossRef Ravi V, Firdosy S, Caillat T, Brandon E, Van Der Walde K, Maricic L, Sayir A (2009) Thermal expansion studies of selected high-temperature thermoelectric materials. J Electron Mater 38(7):1433–1442CrossRef
16.
Zurück zum Zitat Vining CB (1995) Silicon germanium. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press Inc, Boca Raton, pp 277–282 Vining CB (1995) Silicon germanium. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press Inc, Boca Raton, pp 277–282
17.
Zurück zum Zitat Liang SM, Schmid-Fetzer R (2014) Modeling of thermodynamic properties and phase equilibria of the Si–P system. J Phase Equilib Diffus 35(1):24–35CrossRef Liang SM, Schmid-Fetzer R (2014) Modeling of thermodynamic properties and phase equilibria of the Si–P system. J Phase Equilib Diffus 35(1):24–35CrossRef
18.
Zurück zum Zitat Li J-F, Liu W-S, Zhao L-D, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Mater 2(4):152–158CrossRef Li J-F, Liu W-S, Zhao L-D, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Mater 2(4):152–158CrossRef
19.
Zurück zum Zitat Goldsmid HJ, Sharp J (2015) Extrapolation of transport properties and figure of merit of a thermoelectric material. Energies 8(7):6451–6467CrossRef Goldsmid HJ, Sharp J (2015) Extrapolation of transport properties and figure of merit of a thermoelectric material. Energies 8(7):6451–6467CrossRef
21.
Zurück zum Zitat Gallagher PK (1998) Thermogravimetry and thermomagnetometry. In: Brown ME (ed) Handbook of thermal analysis and calorimetry. Elsevier, Amsterdam. pp 241–242, 312 Gallagher PK (1998) Thermogravimetry and thermomagnetometry. In: Brown ME (ed) Handbook of thermal analysis and calorimetry. Elsevier, Amsterdam. pp 241–242, 312
22.
Zurück zum Zitat Brown EB (1988) Introduction to thermal analysis, techniques and applications. Chapman and Hall Ltd, LondonCrossRef Brown EB (1988) Introduction to thermal analysis, techniques and applications. Chapman and Hall Ltd, LondonCrossRef
23.
Zurück zum Zitat Rainova YP (2001) Bystrye termicheskie processy v tehnologii mikroelektroniki: Uchebnoe posobie po kursu “Perspektivnye processy tehnologii mikroelektroniki”. MIET, M Rainova YP (2001) Bystrye termicheskie processy v tehnologii mikroelektroniki: Uchebnoe posobie po kursu “Perspektivnye processy tehnologii mikroelektroniki”. MIET, M
24.
Zurück zum Zitat Touloukian YS, Kirby RK, Taylor RE, Desai PD (1975) Thermal expansion metallic elements and alloys. In: Touloukian YS (ed) Thermophysical properties of matter—the TPRC data series, vol 12. Thermophysical and Electronic Properties Information Analysis Center, Lafayette Touloukian YS, Kirby RK, Taylor RE, Desai PD (1975) Thermal expansion metallic elements and alloys. In: Touloukian YS (ed) Thermophysical properties of matter—the TPRC data series, vol 12. Thermophysical and Electronic Properties Information Analysis Center, Lafayette
25.
Zurück zum Zitat Dinsdale AT (1991) SGTE data for pure elements. Calphad 15(4):317–425CrossRef Dinsdale AT (1991) SGTE data for pure elements. Calphad 15(4):317–425CrossRef
26.
Zurück zum Zitat Meshkov VV, Ivliev AD, Chernoskutov MY (2015) Anomal’nye izmeneniya teplofizicheskih svoistv zheleza ARMKO v okrestnostyah fazovyh perehodov, Vestnik Chelyabinskogo gosudarstvennogo universiteta 22(377) Fizika (21): 32 Meshkov VV, Ivliev AD, Chernoskutov MY (2015) Anomal’nye izmeneniya teplofizicheskih svoistv zheleza ARMKO v okrestnostyah fazovyh perehodov, Vestnik Chelyabinskogo gosudarstvennogo universiteta 22(377) Fizika (21): 32
27.
29.
Zurück zum Zitat Amano T, Beaudry B, Gschneidner K Jr, Hartman R, Vining C, Alexander C (1987) High-temperature heat contents, thermal diffusivities, densities, and thermal conductivities of n-type SiGe (GaP), p-type SiGe (GaP), and p-type SiGe alloys. J Appl Phys 62(3):819–823CrossRef Amano T, Beaudry B, Gschneidner K Jr, Hartman R, Vining C, Alexander C (1987) High-temperature heat contents, thermal diffusivities, densities, and thermal conductivities of n-type SiGe (GaP), p-type SiGe (GaP), and p-type SiGe alloys. J Appl Phys 62(3):819–823CrossRef
30.
Zurück zum Zitat Agarwal G, Speyer R, Hackenberger W (1997) A novel programmed shrinkage dilatometer for optimized sintering of powder ceramics. J Therm Anal 49(3):1297–1304CrossRef Agarwal G, Speyer R, Hackenberger W (1997) A novel programmed shrinkage dilatometer for optimized sintering of powder ceramics. J Therm Anal 49(3):1297–1304CrossRef
31.
Zurück zum Zitat Hackenberger W, Speyer R (1994) A fast-firing shrinkage rate controlled dilatometer using an infrared image furnace. Rev Sci Instrum 65(3):701–706CrossRef Hackenberger W, Speyer R (1994) A fast-firing shrinkage rate controlled dilatometer using an infrared image furnace. Rev Sci Instrum 65(3):701–706CrossRef
32.
Zurück zum Zitat Fattahov Y, Galyautdinov M, L’vova T, Haibullin I (1997) Formirovanie dvumernoi periodicheskoi struktury lokal’nyh oblastei plavleniya na poverhnosti kremniya pri impul’snom svetovom obluchenii. Zhurnal tehnicheskoi fiziki 67(12):113–128 Fattahov Y, Galyautdinov M, L’vova T, Haibullin I (1997) Formirovanie dvumernoi periodicheskoi struktury lokal’nyh oblastei plavleniya na poverhnosti kremniya pri impul’snom svetovom obluchenii. Zhurnal tehnicheskoi fiziki 67(12):113–128
33.
Zurück zum Zitat Kudryashov SI, Emel’yanov VI (2002) Structural transitions in silicon induced by a femtosecond laser pulse: the role of an electron-hole plasma and phonon-phonon anharmonicity. J Exp Theor Phys 94(1):94–107. doi:10.1134/1.1448612 CrossRef Kudryashov SI, Emel’yanov VI (2002) Structural transitions in silicon induced by a femtosecond laser pulse: the role of an electron-hole plasma and phonon-phonon anharmonicity. J Exp Theor Phys 94(1):94–107. doi:10.​1134/​1.​1448612 CrossRef
34.
Zurück zum Zitat Glazov VM, Kol’cov VB, Kucova VZ, Regel’ AR, Taran YN, Timoshina CG, Uzlov KI, Fal’kevich ES (1991) Strukturnye prevrasheniya pri nagreve monokristallov kremniya. Fizika i tehnika poluprovodnikov 25(4):588–595 Glazov VM, Kol’cov VB, Kucova VZ, Regel’ AR, Taran YN, Timoshina CG, Uzlov KI, Fal’kevich ES (1991) Strukturnye prevrasheniya pri nagreve monokristallov kremniya. Fizika i tehnika poluprovodnikov 25(4):588–595
35.
Zurück zum Zitat Naumov S (2009) Hysteresis phenomena in Mesoporous materials. PhD dissertation, Faculty of physics and Geosciences university of Leipzig Naumov S (2009) Hysteresis phenomena in Mesoporous materials. PhD dissertation, Faculty of physics and Geosciences university of Leipzig
36.
Zurück zum Zitat Kagaya H, Kitani Y, Soma T (1985) Linear thermal expansion coefficient of Si1– x Gex solid solution. Phys Status Solidi 132(2):K87–K90CrossRef Kagaya H, Kitani Y, Soma T (1985) Linear thermal expansion coefficient of Si1– x Gex solid solution. Phys Status Solidi 132(2):K87–K90CrossRef
37.
Zurück zum Zitat Kagaya H-M, Kitani Y, Soma T (1986) Theoretical study of thermal properties for Si·Ge system. Solid State Commun 58(6):399–402CrossRef Kagaya H-M, Kitani Y, Soma T (1986) Theoretical study of thermal properties for Si·Ge system. Solid State Commun 58(6):399–402CrossRef
38.
Zurück zum Zitat Katre A, Drautz R, Madsen GK (2013) Modelling the lattice dynamics in SixGe1– x alloys. J Phys 25(36):365403 Katre A, Drautz R, Madsen GK (2013) Modelling the lattice dynamics in SixGe1– x alloys. J Phys 25(36):365403
39.
Zurück zum Zitat Glazov V, Pavlova L (1988) Chemical thermodynamics and phase equilibria, 2nd edn. Metallurgiya, Moscow Glazov V, Pavlova L (1988) Chemical thermodynamics and phase equilibria, 2nd edn. Metallurgiya, Moscow
40.
Zurück zum Zitat Stankus SV, Khairulin RA, Tyagel’skii PV (1999) The thermal properties of germanium and silicon in condensed state. High Temp 37(4):529–534 Stankus SV, Khairulin RA, Tyagel’skii PV (1999) The thermal properties of germanium and silicon in condensed state. High Temp 37(4):529–534
41.
Zurück zum Zitat Okada Y, Tokumaru Y (1984) Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J Appl Phys 56(2):314–320CrossRef Okada Y, Tokumaru Y (1984) Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J Appl Phys 56(2):314–320CrossRef
Metadaten
Titel
Thermal expansion of bulk nanostructured n-type SiGe nanocomposite from 300 to 1400 K
verfasst von
Lydia Pavlova
Yury Shtern
Elena Kirilenko
Publikationsdatum
04.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0387-5

Weitere Artikel der Ausgabe 2/2017

Journal of Materials Science 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.