Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2017

26.07.2016 | Original Article

Thermodynamic assessment of ethyl acetate production via ethanol dehydrogenation

verfasst von: R. L. Andrade, C. E. Hori, A. G. Sato, K. D. Oliveira, C. N. Ávila-Neto

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper reports the results of a thermodynamic analysis conducted for ethanol dehydrogenation. In order to be implemented, the computational code required the choice of a representative set of species, which was selected from performance data of Cu-based catalysts conducted with different residence times (W/F) and supports. Although a major by-product, methyl ethyl ketone (MEK) was removed from the assembly, because it has demonstrated to be thermodynamically more stable than the other organic compounds, which led ethanol to be converted to MEK only, the obtained results were quite representative. The two major organic products (ethyl acetate and acetaldehyde) competed with each other, indicating that ethanol is converted to one of the two substances at the expense of the other. Regardless of the residence time or the type of support employed, the catalytic conversions (obtained from the literature) always remained below the thermodynamic threshold, indicating that thermodynamics is essential to foresee catalyst limitations: maximum ethanol conversion and selectivity to ethyl acetate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Annen SP, Bambagioni V, Bevilacqua M, Filippi J, Marchionni A, Oberhauser W, Schönberg H, Vizza F, Bianchini C, Grützmacher H (2010) A biologically inspired organometallic fuel cell (OMFC) that converts renewable alcohols into energy and chemicals. Angew Chem Int Ed 49(40):7229–7233CrossRef Annen SP, Bambagioni V, Bevilacqua M, Filippi J, Marchionni A, Oberhauser W, Schönberg H, Vizza F, Bianchini C, Grützmacher H (2010) A biologically inspired organometallic fuel cell (OMFC) that converts renewable alcohols into energy and chemicals. Angew Chem Int Ed 49(40):7229–7233CrossRef
2.
Zurück zum Zitat Dutia P (2004) Ethyl acetate: a techno-commercial profile. Chemical Weekly 10:179–186 Dutia P (2004) Ethyl acetate: a techno-commercial profile. Chemical Weekly 10:179–186
3.
Zurück zum Zitat Ogata Y, Kawasaki A (1969) Alkoxide transfer from aluminium alkoxide to aldehyde in the Tishchenko reaction. Tetrahedron 25(4):929–935CrossRef Ogata Y, Kawasaki A (1969) Alkoxide transfer from aluminium alkoxide to aldehyde in the Tishchenko reaction. Tetrahedron 25(4):929–935CrossRef
4.
Zurück zum Zitat Rothenberg G (2008) Catalysis—concepts and green applications. Wiley-VCH, Weinheim Rothenberg G (2008) Catalysis—concepts and green applications. Wiley-VCH, Weinheim
5.
Zurück zum Zitat Colley SW, Fawcett CR, Rathmell C, Tuck MWM (2004) Process for the preparation of ethyl acetate. US Patent 6,809,217, Davy Process Technology Limited Colley SW, Fawcett CR, Rathmell C, Tuck MWM (2004) Process for the preparation of ethyl acetate. US Patent 6,809,217, Davy Process Technology Limited
6.
Zurück zum Zitat Inui K, Kurabayashi T, Sato S (2002) Direct synthesis of ethyl acetate from ethanol carried out under pressure. J Catal 212(2):207–215CrossRef Inui K, Kurabayashi T, Sato S (2002) Direct synthesis of ethyl acetate from ethanol carried out under pressure. J Catal 212(2):207–215CrossRef
7.
Zurück zum Zitat Colley SW, Tabatabaei J, Waugh KC, Wood MA (2005) The detailed kinetics and mechanism of ethyl ethanoate synthesis over a Cu/Cr2O3 catalyst. J Catal 236(1):21–33CrossRef Colley SW, Tabatabaei J, Waugh KC, Wood MA (2005) The detailed kinetics and mechanism of ethyl ethanoate synthesis over a Cu/Cr2O3 catalyst. J Catal 236(1):21–33CrossRef
8.
Zurück zum Zitat Sánchez AB, Homs N, Fierro JLG, de la Piscina PR (2005) New supported Pd catalysts for the direct transformation of ethanol to ethyl acetate under medium pressure conditions. Catal Today 107–108:431–435CrossRef Sánchez AB, Homs N, Fierro JLG, de la Piscina PR (2005) New supported Pd catalysts for the direct transformation of ethanol to ethyl acetate under medium pressure conditions. Catal Today 107–108:431–435CrossRef
9.
Zurück zum Zitat Natal-Santiago MA, Hill JM, Dumesic JA (1999) Studies of the adsorption of acetaldehyde, methyl acetate, ethyl acetate, and methyl trifluoroacetate on silica. J Mol Catal A Chem 140(2):199–214CrossRef Natal-Santiago MA, Hill JM, Dumesic JA (1999) Studies of the adsorption of acetaldehyde, methyl acetate, ethyl acetate, and methyl trifluoroacetate on silica. J Mol Catal A Chem 140(2):199–214CrossRef
10.
Zurück zum Zitat Santiago MAN, Sánchez-Castillo MA, Cortright RD, Dumesic JA (2000) Catalytic reduction of acetic acid, methyl acetate, and ethyl acetate over silica-supported copper. J Catal 193(1):16–28CrossRef Santiago MAN, Sánchez-Castillo MA, Cortright RD, Dumesic JA (2000) Catalytic reduction of acetic acid, methyl acetate, and ethyl acetate over silica-supported copper. J Catal 193(1):16–28CrossRef
11.
Zurück zum Zitat Inui K, Kurabayashi T, Sato S (2002) Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. Appl Catal A 237(1–2):53–61CrossRef Inui K, Kurabayashi T, Sato S (2002) Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. Appl Catal A 237(1–2):53–61CrossRef
12.
Zurück zum Zitat Inui K, Kurabayashi T, Sato S, Ichikawa N (2004) Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. J Mol Catal A Chem 216(1):147–156CrossRef Inui K, Kurabayashi T, Sato S, Ichikawa N (2004) Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. J Mol Catal A Chem 216(1):147–156CrossRef
13.
Zurück zum Zitat Gaspar AB, Esteves AML, Mendes FMT, Barbosa FG, Appel LG (2009) Chemicals from ethanol—the ethyl acetate one-pot synthesis. Appl Catal A 363(1–2):109–114CrossRef Gaspar AB, Esteves AML, Mendes FMT, Barbosa FG, Appel LG (2009) Chemicals from ethanol—the ethyl acetate one-pot synthesis. Appl Catal A 363(1–2):109–114CrossRef
14.
Zurück zum Zitat Gaspar AB, Barbosa FG, Letichevsky S, Appel LG (2010) The one-pot ethyl acetate syntheses: the role of the support in the oxidative and the dehydrogenative routes. Appl Catal A 380(1–2):113–117CrossRef Gaspar AB, Barbosa FG, Letichevsky S, Appel LG (2010) The one-pot ethyl acetate syntheses: the role of the support in the oxidative and the dehydrogenative routes. Appl Catal A 380(1–2):113–117CrossRef
15.
Zurück zum Zitat Zonetti PC, Celnik J, Letichevsky S, Gaspar AB, Appel LG (2011) Chemicals from ethanol—the dehydrogenative route of the ethyl acetate one-pot synthesis. J Mol Catal A Chem 334(1–2):29–34CrossRef Zonetti PC, Celnik J, Letichevsky S, Gaspar AB, Appel LG (2011) Chemicals from ethanol—the dehydrogenative route of the ethyl acetate one-pot synthesis. J Mol Catal A Chem 334(1–2):29–34CrossRef
16.
Zurück zum Zitat Sato AG, Volanti DP, Meira DM, Damyanova S, Longo E, Bueno JMC (2013) Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion. J Catal 307:1–17CrossRef Sato AG, Volanti DP, Meira DM, Damyanova S, Longo E, Bueno JMC (2013) Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion. J Catal 307:1–17CrossRef
17.
Zurück zum Zitat Prasad J, Menon PG (1972) The bifunctional nature of Cu-Al2O3 catalysts in the conversion of ethanol to ethyl acetate. J Catal 26(3):477–481CrossRef Prasad J, Menon PG (1972) The bifunctional nature of Cu-Al2O3 catalysts in the conversion of ethanol to ethyl acetate. J Catal 26(3):477–481CrossRef
18.
Zurück zum Zitat Manríquez ME, López T, Gómez R, Navarrete J (2004) Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties. J Mol Catal A Chem 220(2):229–237CrossRef Manríquez ME, López T, Gómez R, Navarrete J (2004) Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties. J Mol Catal A Chem 220(2):229–237CrossRef
19.
Zurück zum Zitat Zhang L, Pham TN, Faria J, Resasco DE (2015) Improving the selectivity to C4 products in the aldol condensation of acetaldehyde in ethanol over faujasite zeolites. Appl Catal A 504:119–129CrossRef Zhang L, Pham TN, Faria J, Resasco DE (2015) Improving the selectivity to C4 products in the aldol condensation of acetaldehyde in ethanol over faujasite zeolites. Appl Catal A 504:119–129CrossRef
20.
Zurück zum Zitat Wang Q, Yan X-H, Chen G-H, Han S-J (2003) Measurement and prediction of quaternary azeotropes for cyclohexane + 2-propanol + ethyl acetate + butanone system at elevated pressures. J Chem Eng Data 48(1):66–70CrossRef Wang Q, Yan X-H, Chen G-H, Han S-J (2003) Measurement and prediction of quaternary azeotropes for cyclohexane + 2-propanol + ethyl acetate + butanone system at elevated pressures. J Chem Eng Data 48(1):66–70CrossRef
21.
Zurück zum Zitat Gursahani KI, Alcalá R, Cortright RD, Dumesic JA (2001) Reaction kinetics measurements and analysis of reaction pathways for conversions of acetic acid, ethanol, and ethyl acetate over silica-supported Pt. Appl Catal A 222(1–2):369–392CrossRef Gursahani KI, Alcalá R, Cortright RD, Dumesic JA (2001) Reaction kinetics measurements and analysis of reaction pathways for conversions of acetic acid, ethanol, and ethyl acetate over silica-supported Pt. Appl Catal A 222(1–2):369–392CrossRef
22.
Zurück zum Zitat Ávila-Neto CN, Dantas SC, Silva FA, Franco TV, Romanielo LL, Hori CE, Assis AJ (2009) Hydrogen production from methane reforming: thermodynamic assessment and autothermal reactor design. J Nat Gas Sci Eng 1(6):205–215CrossRef Ávila-Neto CN, Dantas SC, Silva FA, Franco TV, Romanielo LL, Hori CE, Assis AJ (2009) Hydrogen production from methane reforming: thermodynamic assessment and autothermal reactor design. J Nat Gas Sci Eng 1(6):205–215CrossRef
23.
Zurück zum Zitat de Ávila CN, Hori CE, de Assis AJ (2011) Thermodynamic assessment of hydrogen production and cobalt oxidation susceptibility under ethanol reforming conditions. Energy 36(7):4385–4395CrossRef de Ávila CN, Hori CE, de Assis AJ (2011) Thermodynamic assessment of hydrogen production and cobalt oxidation susceptibility under ethanol reforming conditions. Energy 36(7):4385–4395CrossRef
24.
Zurück zum Zitat da Silva AL, Malfatti CF, Müller IL (2009) Thermodynamic analysis of ethanol steam reforming using Gibbs energy minimization method: a detailed study of the conditions of carbon deposition. Int J Hydrogen Energy 34(10):4321–4330CrossRef da Silva AL, Malfatti CF, Müller IL (2009) Thermodynamic analysis of ethanol steam reforming using Gibbs energy minimization method: a detailed study of the conditions of carbon deposition. Int J Hydrogen Energy 34(10):4321–4330CrossRef
25.
Zurück zum Zitat Freitas IC, Damyanova S, Oliveira DC, Marques CMP, Bueno JMC (2014) Effect of Cu content on the surface and catalytic properties of Cu/ZrO2 catalyst for ethanol dehydrogenation. J Mol Catal A Chem 381:26–37CrossRef Freitas IC, Damyanova S, Oliveira DC, Marques CMP, Bueno JMC (2014) Effect of Cu content on the surface and catalytic properties of Cu/ZrO2 catalyst for ethanol dehydrogenation. J Mol Catal A Chem 381:26–37CrossRef
Metadaten
Titel
Thermodynamic assessment of ethyl acetate production via ethanol dehydrogenation
verfasst von
R. L. Andrade
C. E. Hori
A. G. Sato
K. D. Oliveira
C. N. Ávila-Neto
Publikationsdatum
26.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2017
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-016-0213-y

Weitere Artikel der Ausgabe 1/2017

Biomass Conversion and Biorefinery 1/2017 Zur Ausgabe