Skip to main content
Erschienen in: Acta Mechanica 7/2020

20.05.2020 | Original Paper

Thermoelastic influence of convective and conduction interstitial conditions on the size of the contact zone in three-dimensional receding thermoelastic contact problem

verfasst von: J. Vallepuga-Espinosa, I. Ubero-Martínez, J. Cifuentes-Rodríguez, L. Rodríguez-Tembleque

Erschienen in: Acta Mechanica | Ausgabe 7/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The temperature variation within two elastic bodies in perfect thermoelastic contact may cause the contact area to become convex and hence lead to a reduction in the size of the contacting surface. In receding thermoelastic contact problems, the final size of the contact zone is independent of the applied loads, being only affected by the thermomechanical properties of the solids. However, the final size of the contact zone can also be affected by the conductive and convective boundary conditions at the separation zones of the contacting surfaces. In those regions, the heat flux is a function of the separation between the solids, so the thermal and the thermoelastic problems are highly coupled. For this reason, this work studies the three-dimensional receding thermomechanical contact problem under conductive and convective boundary conditions at the interstitial zones of the contact area. After the validation of the numerical scheme presented to solve this problem, several examples are presented and discussed in detail. The results reveal that conductive and convective interstitial boundary conditions have a significant effect not only on the size of the contact zone, but also on the resulting tractions, temperature and heat flux distributions.
Literatur
2.
Zurück zum Zitat Comninou, M., Dundurs, J.: On the barber boundary conditions for thermoelastic contact. J. Appl. Mech. 46, 849–853 (1979)MATH Comninou, M., Dundurs, J.: On the barber boundary conditions for thermoelastic contact. J. Appl. Mech. 46, 849–853 (1979)MATH
3.
Zurück zum Zitat Barber, J.R.: Indentation of the semi-infinite elastic solid by a hot sphere. Int. J. Mech. Sci. 15, 813–819 (1973) Barber, J.R.: Indentation of the semi-infinite elastic solid by a hot sphere. Int. J. Mech. Sci. 15, 813–819 (1973)
4.
Zurück zum Zitat Dundurs, J., Stippes, M.: Role of elastic constants in certain contact problems. J. Appl. Mech. 37, 965–970 (1970) Dundurs, J., Stippes, M.: Role of elastic constants in certain contact problems. J. Appl. Mech. 37, 965–970 (1970)
5.
Zurück zum Zitat Comez, I., Birinci, A., Erdol, R.: Double receding contact problem for a rigid stamp and two elastic layers. Eur. J. Mech. A Solids 23, 301–309 (2004)MATH Comez, I., Birinci, A., Erdol, R.: Double receding contact problem for a rigid stamp and two elastic layers. Eur. J. Mech. A Solids 23, 301–309 (2004)MATH
6.
Zurück zum Zitat Kahya, V., Ozsahin, T.S., Birinci, A., Erdol, R.: A receding contact problem for an anisotropic elastic medium consisting of a layer and a half plane. Int. J. Solids Struct. 44, 5695–5710 (2007)MATH Kahya, V., Ozsahin, T.S., Birinci, A., Erdol, R.: A receding contact problem for an anisotropic elastic medium consisting of a layer and a half plane. Int. J. Solids Struct. 44, 5695–5710 (2007)MATH
7.
Zurück zum Zitat Ahn, Y.J., Barber, J.R.: Response of frictional receding contact problems to cyclic loading. Int. J. Mech. Sci. 50, 1519–1528 (2008)MATH Ahn, Y.J., Barber, J.R.: Response of frictional receding contact problems to cyclic loading. Int. J. Mech. Sci. 50, 1519–1528 (2008)MATH
10.
Zurück zum Zitat Parel, K.S., Hills, D.A.: Frictional receding contact analysis of a layer on a half-plane subjected to semi-infinite surface pressure. Int. J. Mech. Sci. 108–109, 137–143 (2016) Parel, K.S., Hills, D.A.: Frictional receding contact analysis of a layer on a half-plane subjected to semi-infinite surface pressure. Int. J. Mech. Sci. 108–109, 137–143 (2016)
11.
Zurück zum Zitat Yilmaz, K.B., Comez, I., Yildirim, B., Güler, M.A., El-Borgi, S.: Frictional receding contact problem for a graded bilayer system indented by a rigid punch. Int. J. Mech. Sci. 141, 127–142 (2018) Yilmaz, K.B., Comez, I., Yildirim, B., Güler, M.A., El-Borgi, S.: Frictional receding contact problem for a graded bilayer system indented by a rigid punch. Int. J. Mech. Sci. 141, 127–142 (2018)
12.
Zurück zum Zitat Lopes, J.P., Hills, D.A.: The axisymmetric frictional receding contact of a layer pressed against a half-space by pressure outside a disk. Eur. J. Mech. A Solids 77, 103787 (2019)MathSciNetMATH Lopes, J.P., Hills, D.A.: The axisymmetric frictional receding contact of a layer pressed against a half-space by pressure outside a disk. Eur. J. Mech. A Solids 77, 103787 (2019)MathSciNetMATH
13.
Zurück zum Zitat Lopes, J.P., Hills, D.A.: The axisymmetric frictional receding contact of a layer pressed against a half-space by a point force. Int. J. Solids Struct. 171, 47–53 (2019)MATH Lopes, J.P., Hills, D.A.: The axisymmetric frictional receding contact of a layer pressed against a half-space by a point force. Int. J. Solids Struct. 171, 47–53 (2019)MATH
14.
Zurück zum Zitat Wriggers, P., Zavarise, G.: Thermomechanical contact—a rigorous but simple numerical approach. Comput. Struct. 46(1), 47–53 (1993) Wriggers, P., Zavarise, G.: Thermomechanical contact—a rigorous but simple numerical approach. Comput. Struct. 46(1), 47–53 (1993)
15.
Zurück zum Zitat Johansson, L., Klarbring, A.: Thermoelastic frictional contact problems: modelling, finite element aproximantion and numerical realization. Comput. Methods Appl. Mech. Eng. 105, 181–210 (1993)MATH Johansson, L., Klarbring, A.: Thermoelastic frictional contact problems: modelling, finite element aproximantion and numerical realization. Comput. Methods Appl. Mech. Eng. 105, 181–210 (1993)MATH
16.
Zurück zum Zitat Strömberg, N.: Finite element treatment of two-dimensioanl thermoelastic wear problems. Comput. Methods Appl. Mech. Eng. 177, 441–455 (1999)MATH Strömberg, N.: Finite element treatment of two-dimensioanl thermoelastic wear problems. Comput. Methods Appl. Mech. Eng. 177, 441–455 (1999)MATH
17.
Zurück zum Zitat Ireman, P., Klarbring, A., Strömberg, N.: Finite element algorithms for thermoelastic wear problems. Eur. J. Mech. A Solids 21, 423–440 (2002)MathSciNetMATH Ireman, P., Klarbring, A., Strömberg, N.: Finite element algorithms for thermoelastic wear problems. Eur. J. Mech. A Solids 21, 423–440 (2002)MathSciNetMATH
18.
Zurück zum Zitat Strömberg, N.: An Eulerian approach for simulating frictional heating in disc-pad systems. Eur. J. Mech. A Solids 30, 673–683 (2011)MATH Strömberg, N.: An Eulerian approach for simulating frictional heating in disc-pad systems. Eur. J. Mech. A Solids 30, 673–683 (2011)MATH
19.
Zurück zum Zitat Bouzinov, P.A., Patunso, D., Bathe, K.-J.: A finite element procedure for the analysis of thermomechanical solids in contact. Comput. Struct. 75, 551–573 (2000) Bouzinov, P.A., Patunso, D., Bathe, K.-J.: A finite element procedure for the analysis of thermomechanical solids in contact. Comput. Struct. 75, 551–573 (2000)
20.
Zurück zum Zitat Hüeber, S., Wohlmut, B.I.: Thermo-mechanical contact problems on non-matching meshes. Comput. Methods Appl. Mech. Eng. 198, 1338–1350 (2009)MATH Hüeber, S., Wohlmut, B.I.: Thermo-mechanical contact problems on non-matching meshes. Comput. Methods Appl. Mech. Eng. 198, 1338–1350 (2009)MATH
21.
Zurück zum Zitat Ovcharenko, A., Yang, M., Chun, K., Talke, F.E.: Transient therm-mechanical contact of an impacting sphere on a moving flat. J. Tribol. 133, 031404 (2011) Ovcharenko, A., Yang, M., Chun, K., Talke, F.E.: Transient therm-mechanical contact of an impacting sphere on a moving flat. J. Tribol. 133, 031404 (2011)
22.
Zurück zum Zitat Seitz, A., Wall, W.A., Popp, A.: Nitsche’s method for finite deformation thermomechanical contact problems. Comput. Mech. 63, 1091–1110 (2019)MathSciNetMATH Seitz, A., Wall, W.A., Popp, A.: Nitsche’s method for finite deformation thermomechanical contact problems. Comput. Mech. 63, 1091–1110 (2019)MathSciNetMATH
23.
Zurück zum Zitat Chan, S.K., Tuba, I.S.: A finite element method for contact problems of solid bodies—1: theory and validation. Int. J. Mech. Sci. 13, 615–625 (1971)MATH Chan, S.K., Tuba, I.S.: A finite element method for contact problems of solid bodies—1: theory and validation. Int. J. Mech. Sci. 13, 615–625 (1971)MATH
24.
Zurück zum Zitat Francavilla, A., Zienkiewicz, O.C.: A note on numerical computation of elastic contact problems. Int. J. Numer. Methods Eng. 19, 913–924 (1975) Francavilla, A., Zienkiewicz, O.C.: A note on numerical computation of elastic contact problems. Int. J. Numer. Methods Eng. 19, 913–924 (1975)
25.
Zurück zum Zitat Jing, H.S., Liao, M.L.: An improved finite element scheme for elastic contact problems with friction. Comput. Struct. 35(5), 571–578 (1990) Jing, H.S., Liao, M.L.: An improved finite element scheme for elastic contact problems with friction. Comput. Struct. 35(5), 571–578 (1990)
26.
Zurück zum Zitat Aliabadi, F.M.H.: The Boundary Element Method: Applications in Solids and Structures, vol. 2. Wiley, Chichester (2002)MATH Aliabadi, F.M.H.: The Boundary Element Method: Applications in Solids and Structures, vol. 2. Wiley, Chichester (2002)MATH
27.
Zurück zum Zitat Man, K.W., Aliabadi, M.H.: BEM frictional contact analysis: modelling considerations. Eng. Anal. Bound. Elem. 11, 77–85 (1993) Man, K.W., Aliabadi, M.H.: BEM frictional contact analysis: modelling considerations. Eng. Anal. Bound. Elem. 11, 77–85 (1993)
28.
Zurück zum Zitat Rodríguez-Tembleque, L., Abascal, R.: A FEM-BEM fast methodology for 3D frictional contact problems. Comput. Struct. 88, 924–937 (2010)MATH Rodríguez-Tembleque, L., Abascal, R.: A FEM-BEM fast methodology for 3D frictional contact problems. Comput. Struct. 88, 924–937 (2010)MATH
29.
Zurück zum Zitat Rodríguez-Tembleque, L., Abascal, R., Aliabadi, M.H.: A boundary element formulation for wear modeling on 3d contact and rolling-contact problems. Int. J. Solids Struct. 47, 2600–2612 (2010)MATH Rodríguez-Tembleque, L., Abascal, R., Aliabadi, M.H.: A boundary element formulation for wear modeling on 3d contact and rolling-contact problems. Int. J. Solids Struct. 47, 2600–2612 (2010)MATH
30.
Zurück zum Zitat Rodríguez-Tembleque, L., Buroni, F.C., Sáez, A.: 3d bem for orthotropic frictional contact of piezoelectric bodies. Comput. Mech. 56, 491–502 (2015)MathSciNetMATH Rodríguez-Tembleque, L., Buroni, F.C., Sáez, A.: 3d bem for orthotropic frictional contact of piezoelectric bodies. Comput. Mech. 56, 491–502 (2015)MathSciNetMATH
31.
Zurück zum Zitat Alonso, P., Garrido García, J.A.: BEM applied to 2D thermoelastic contact problems including conduction and forced convection in interstitial zones. Eng. Anal. Bound. Elem. 15(3), 249–259 (1995) Alonso, P., Garrido García, J.A.: BEM applied to 2D thermoelastic contact problems including conduction and forced convection in interstitial zones. Eng. Anal. Bound. Elem. 15(3), 249–259 (1995)
32.
Zurück zum Zitat Espinosa, J.V., Mediavilla, A.F.: Boundary element method applied to three dimensional thermoelastic contact. Eng. Anal. Bound. Elem. 36(6), 928–933 (2012)MATH Espinosa, J.V., Mediavilla, A.F.: Boundary element method applied to three dimensional thermoelastic contact. Eng. Anal. Bound. Elem. 36(6), 928–933 (2012)MATH
33.
Zurück zum Zitat Vallepuga-Espinosa, J., Ubero-Martínez, I., Sánchez, L., Cifuentes-Rodríguez, J.: An incremental-iterative bem methodology to solve 3d thermoelastic contact problem including variable thermal resistance in the contact zone. Contin. Mech. Thermodyn. 31(5), 1543–1558 (2019)MathSciNet Vallepuga-Espinosa, J., Ubero-Martínez, I., Sánchez, L., Cifuentes-Rodríguez, J.: An incremental-iterative bem methodology to solve 3d thermoelastic contact problem including variable thermal resistance in the contact zone. Contin. Mech. Thermodyn. 31(5), 1543–1558 (2019)MathSciNet
34.
Zurück zum Zitat Ubero-Martinez, I., Vallepuga-Espinosa, J., Rodríguez-Tembleque, L., Cifuentes-Rodríguez, J.: The effect of conduction and convective conditions at interstitial regions on 3d thermoelastic contact problems. Eng. Anal. Bound. Elem. 107, 243–256 (2019)MathSciNetMATH Ubero-Martinez, I., Vallepuga-Espinosa, J., Rodríguez-Tembleque, L., Cifuentes-Rodríguez, J.: The effect of conduction and convective conditions at interstitial regions on 3d thermoelastic contact problems. Eng. Anal. Bound. Elem. 107, 243–256 (2019)MathSciNetMATH
35.
Zurück zum Zitat Andersson, T.: The boundary element method applied to two-dimensional contact problems with friction. In: Brebbia, C.A. (ed.) Boundary Element Methods. Springer, Berlin (1981)MATH Andersson, T.: The boundary element method applied to two-dimensional contact problems with friction. In: Brebbia, C.A. (ed.) Boundary Element Methods. Springer, Berlin (1981)MATH
36.
Zurück zum Zitat Garrido, J.A., Foces, A.: BEM applied to receding contact problems with friction. Math. Comput. Model. 133(3—-5), 143–153 (1991)MATH Garrido, J.A., Foces, A.: BEM applied to receding contact problems with friction. Math. Comput. Model. 133(3—-5), 143–153 (1991)MATH
37.
Zurück zum Zitat Garrido, J.A., Lorenzana, A.: Receding contact problem involving large displacements using the BEM. Eng. Anal. Boun. Elem. 21, 295–303 (1998)MATH Garrido, J.A., Lorenzana, A.: Receding contact problem involving large displacements using the BEM. Eng. Anal. Boun. Elem. 21, 295–303 (1998)MATH
38.
Zurück zum Zitat París, F., Antonio, F., Garrido, J.A.: Application of boundary element method to solve three-dimensional elastic contact problems without friction. Comput. Struct. 43, 19–30 (1992)MATH París, F., Antonio, F., Garrido, J.A.: Application of boundary element method to solve three-dimensional elastic contact problems without friction. Comput. Struct. 43, 19–30 (1992)MATH
39.
Zurück zum Zitat Alonso, P.: Thermoelastic Contact Problem Using BEM. PhD thesis, Universidad de Valladolid, Spain (1995) Alonso, P.: Thermoelastic Contact Problem Using BEM. PhD thesis, Universidad de Valladolid, Spain (1995)
40.
Zurück zum Zitat Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques, pp. 177–236. Springer, Berlin (1984)MATH Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques, pp. 177–236. Springer, Berlin (1984)MATH
Metadaten
Titel
Thermoelastic influence of convective and conduction interstitial conditions on the size of the contact zone in three-dimensional receding thermoelastic contact problem
verfasst von
J. Vallepuga-Espinosa
I. Ubero-Martínez
J. Cifuentes-Rodríguez
L. Rodríguez-Tembleque
Publikationsdatum
20.05.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 7/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02694-8

Weitere Artikel der Ausgabe 7/2020

Acta Mechanica 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.