Skip to main content
Erschienen in: Strength of Materials 1/2019

28.03.2019

Thermomechanical Coupling Model for a Stainless Steel-Clad Plate on Heat Treatment

verfasst von: B. Guan, Y. Zang, F. Yang, X. Y. Yang, Q. Qin

Erschienen in: Strength of Materials | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quick and correct prediction of the internal stress and deformation of stainless steel-clad plates on heat treatment is a problem of specific interest. A thermomechanical coupling model based on the engineering elastic-plastic theory is detailed. The discretization method and difference equations used simultaneously provide effective numerical calculations for the model. The generalized finite element model verifies relevant simplification conditions and efficiency of the numerical calculation logic. Heat treatment experiments of clad plates are also designed and presented, and the ability of the model to predict the stress and deformation behavior of the clad plate in the actual heat treatment process is evaluated. The calculation logic of the model is reasonable, and the prediction error of deformation and internal stress of the plate is ~15%. The model exhibits an extremely high computational efficiency and can meet the requirements of on-line analysis for heat treatment processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Jing, Y. Qin, X. Zang, and Y. Li, “The bonding properties and interfacial morphologies of clad plate prepared by multiple passes hot rolling in a protective atmosphere,” J. Mater. Process. Tech., 214, No. 8, 1686–1695 (2014).CrossRef Y. Jing, Y. Qin, X. Zang, and Y. Li, “The bonding properties and interfacial morphologies of clad plate prepared by multiple passes hot rolling in a protective atmosphere,” J. Mater. Process. Tech., 214, No. 8, 1686–1695 (2014).CrossRef
2.
Zurück zum Zitat L. Li, F. X. Yin, and K. Nagai, “Progress of laminated materials and clad steels production,” Mater. Sci. Forum, 675–677, 439–447 (2011).CrossRef L. Li, F. X. Yin, and K. Nagai, “Progress of laminated materials and clad steels production,” Mater. Sci. Forum, 675–677, 439–447 (2011).CrossRef
4.
Zurück zum Zitat M. Yang, X. Zuo, M. Zhao, and J. Wang, “Research Progress of manufacturing technology for stainless steel clad plate,” Hot Work. Technol., No. 20, 93–96 (2012). M. Yang, X. Zuo, M. Zhao, and J. Wang, “Research Progress of manufacturing technology for stainless steel clad plate,” Hot Work. Technol., No. 20, 93–96 (2012).
5.
Zurück zum Zitat H. Liu, X. Zhang, and L. Li, “Effects of heat treatment on microstructure and properties of hot rolled stainless steel clad plate,” Trans. Mater. Heat Treat., 38, No. 6, 67–70 (2013). H. Liu, X. Zhang, and L. Li, “Effects of heat treatment on microstructure and properties of hot rolled stainless steel clad plate,” Trans. Mater. Heat Treat., 38, No. 6, 67–70 (2013).
6.
Zurück zum Zitat G. Xie, Z. Luo, G. Wang, et al., “Interface characteristic and properties of stainless steel/HSLA steel clad plate by vacuum rolling cladding,” Mater. Trans., 52, No. 8, 1709–1712 (2011).CrossRef G. Xie, Z. Luo, G. Wang, et al., “Interface characteristic and properties of stainless steel/HSLA steel clad plate by vacuum rolling cladding,” Mater. Trans., 52, No. 8, 1709–1712 (2011).CrossRef
7.
Zurück zum Zitat I. Hordych, D. Rodman, F. Nürnberger, et al., “Effect of pre-rolling heat treatments on the bond strength of cladded galvanized steels in a cold roll bonding process,” Steel Res. Int., 87, No. 12, 1619–1626 (2016).CrossRef I. Hordych, D. Rodman, F. Nürnberger, et al., “Effect of pre-rolling heat treatments on the bond strength of cladded galvanized steels in a cold roll bonding process,” Steel Res. Int., 87, No. 12, 1619–1626 (2016).CrossRef
8.
Zurück zum Zitat N. V. Rao, D. S. Sarma, S. Nagarjuna, and G. M. Reddy, “Influence of hot rolling and heat treatment on structure and properties of HSLA steel explosively clad with austenitic stainless steel,” Mater. Sci. Technol., 25, No. 11, 1387–1396 (2009).CrossRef N. V. Rao, D. S. Sarma, S. Nagarjuna, and G. M. Reddy, “Influence of hot rolling and heat treatment on structure and properties of HSLA steel explosively clad with austenitic stainless steel,” Mater. Sci. Technol., 25, No. 11, 1387–1396 (2009).CrossRef
9.
Zurück zum Zitat H. Jiang, X. Yan, J. Liu, and X. Duan, “Effect of heat treatment on microstructure and mechanical property of Ti–steel explosive-rolling clad plate,” T. Nonferr. Metal. Soc., 24, No. 3, 697–704 (2014).CrossRef H. Jiang, X. Yan, J. Liu, and X. Duan, “Effect of heat treatment on microstructure and mechanical property of Ti–steel explosive-rolling clad plate,” T. Nonferr. Metal. Soc., 24, No. 3, 697–704 (2014).CrossRef
10.
Zurück zum Zitat M. Yazdani, M. R. Toroghinejad, and S. M. Hashemi, “Effects of heat treatment on interface microstructure and mechanical properties of explosively welded Ck60/St37 plates,” J. Mater. Eng. Perform., 25, No. 12, 5330–5342 (2016).CrossRef M. Yazdani, M. R. Toroghinejad, and S. M. Hashemi, “Effects of heat treatment on interface microstructure and mechanical properties of explosively welded Ck60/St37 plates,” J. Mater. Eng. Perform., 25, No. 12, 5330–5342 (2016).CrossRef
11.
Zurück zum Zitat Y. Trykov, L. Gurevich, D. Pronichev, and M. Trunov, “Influence of strain-hardened zones and intermetallic layers of explosion welded and heat treated Al/Cu laminated metal composites on the evolution of thermal conductivity coefficient,” Mater. Sci., 20, No. 3, 267–270 (2014). Y. Trykov, L. Gurevich, D. Pronichev, and M. Trunov, “Influence of strain-hardened zones and intermetallic layers of explosion welded and heat treated Al/Cu laminated metal composites on the evolution of thermal conductivity coefficient,” Mater. Sci., 20, No. 3, 267–270 (2014).
12.
Zurück zum Zitat H. J. Li, L. G. Li, Y. L. Li, and G. D. Wang, “Online monitor and control of cooling temperature on run-out table of hot strip mill,” Steel Res. Int., 86, No. 11, 1225–1233 (2015).CrossRef H. J. Li, L. G. Li, Y. L. Li, and G. D. Wang, “Online monitor and control of cooling temperature on run-out table of hot strip mill,” Steel Res. Int., 86, No. 11, 1225–1233 (2015).CrossRef
13.
Zurück zum Zitat Y. Lee, S. Choi, and P. D. Hodgson, “Integrated model for thermo-mechanical controlled process in rod (or bar) rolling,” J. Mater. Process. Tech., 125–126, 678–688 (2002).CrossRef Y. Lee, S. Choi, and P. D. Hodgson, “Integrated model for thermo-mechanical controlled process in rod (or bar) rolling,” J. Mater. Process. Tech., 125–126, 678–688 (2002).CrossRef
14.
Zurück zum Zitat A. K. Singh and D. Mazumdar, “Comparison of several numerical prediction methods for thermal fields during phase transformation of plain carbon steels,” ISIJ Int., 31, No. 12, 1441–1444 (1991).CrossRef A. K. Singh and D. Mazumdar, “Comparison of several numerical prediction methods for thermal fields during phase transformation of plain carbon steels,” ISIJ Int., 31, No. 12, 1441–1444 (1991).CrossRef
15.
Zurück zum Zitat A. Mukhopadhyay and S. Sikdar, “Implementation of an on-line run-out table model in a hot strip mill,” J. Mater. Process. Tech., 169, No. 2, 164–172 (2005).CrossRef A. Mukhopadhyay and S. Sikdar, “Implementation of an on-line run-out table model in a hot strip mill,” J. Mater. Process. Tech., 169, No. 2, 164–172 (2005).CrossRef
16.
Zurück zum Zitat A. Saboonchi and S. Hassanpour, “Simulation-based prediction of hot-rolled coil forced cooling,” Appl. Therm. Eng., 28, No. 13, 1630–1637 (2008).CrossRef A. Saboonchi and S. Hassanpour, “Simulation-based prediction of hot-rolled coil forced cooling,” Appl. Therm. Eng., 28, No. 13, 1630–1637 (2008).CrossRef
17.
Zurück zum Zitat N. Mansouri, M. Mirhosseini, and A. Saboonchi, “Thermal modeling of strip across the transfer table in the hot rolling process,” Appl. Therm. Eng., 38, 91–104 (2012).CrossRef N. Mansouri, M. Mirhosseini, and A. Saboonchi, “Thermal modeling of strip across the transfer table in the hot rolling process,” Appl. Therm. Eng., 38, 91–104 (2012).CrossRef
18.
Zurück zum Zitat X. Chen, G. Wang, Y. Tian, et al., “An on-line finite element temperature field model for plate ultra fast cooling process,” J. Iron Steel Res. Int., 21, No. 5, 481–487 (2014).CrossRef X. Chen, G. Wang, Y. Tian, et al., “An on-line finite element temperature field model for plate ultra fast cooling process,” J. Iron Steel Res. Int., 21, No. 5, 481–487 (2014).CrossRef
19.
Zurück zum Zitat G. Sun, H. N. Han, J. K. Lee, et al., “A finite element model for the prediction of thermal and metallurgical behavior of strip on run-out-table in hot rolling,” ISIJ Int., 42, No. 4, 392–400 (2002).CrossRef G. Sun, H. N. Han, J. K. Lee, et al., “A finite element model for the prediction of thermal and metallurgical behavior of strip on run-out-table in hot rolling,” ISIJ Int., 42, No. 4, 392–400 (2002).CrossRef
20.
Zurück zum Zitat A. Milenin, R. Kuziak, M. Lech-Grega, et al., “Numerical modeling and experimental identification of residual stresses in hot-rolled strips,” Arch. Civ. Mech. Eng., 16, No. 1, 125–134 (2016).CrossRef A. Milenin, R. Kuziak, M. Lech-Grega, et al., “Numerical modeling and experimental identification of residual stresses in hot-rolled strips,” Arch. Civ. Mech. Eng., 16, No. 1, 125–134 (2016).CrossRef
21.
Zurück zum Zitat H. H. Cho, Y. G. Cho, D. W. Kim, et al., “Finite element investigation for edge wave prediction in hot rolled steel during run out table cooling,” ISIJ Int., 54, No. 7, 1646–1652 (2014).CrossRef H. H. Cho, Y. G. Cho, D. W. Kim, et al., “Finite element investigation for edge wave prediction in hot rolled steel during run out table cooling,” ISIJ Int., 54, No. 7, 1646–1652 (2014).CrossRef
22.
Zurück zum Zitat X. Wang, F. Li, Q. Yang, and A. He, “FEM analysis for residual stress prediction in hot rolled steel strip during the run-out table cooling,” Appl. Math. Model., 37, No. 1, 586–609 (2013).CrossRef X. Wang, F. Li, Q. Yang, and A. He, “FEM analysis for residual stress prediction in hot rolled steel strip during the run-out table cooling,” Appl. Math. Model., 37, No. 1, 586–609 (2013).CrossRef
23.
Zurück zum Zitat Y. Lu and L. Cheng, Theory and Analysis of Heat Transfer, Science Press (1997). Y. Lu and L. Cheng, Theory and Analysis of Heat Transfer, Science Press (1997).
24.
Zurück zum Zitat Y. Y. Zhang, Z. W. Zhao, Q. Hu, et al., “Establishing and verifying mathematical models of inverse heat conduction problem during aerosol cooling process of the continuous casting,” Comput. Simul., 32, No. 1, 270–273 (2015). Y. Y. Zhang, Z. W. Zhao, Q. Hu, et al., “Establishing and verifying mathematical models of inverse heat conduction problem during aerosol cooling process of the continuous casting,” Comput. Simul., 32, No. 1, 270–273 (2015).
25.
Zurück zum Zitat A. M. Nawwar, K. McLachlan, and J. Shewchuk, “A modified hole-drilling technique for determining residual stresses in thin plates,” Exp. Mech., 16, No. 6, 226–232 (1976).CrossRef A. M. Nawwar, K. McLachlan, and J. Shewchuk, “A modified hole-drilling technique for determining residual stresses in thin plates,” Exp. Mech., 16, No. 6, 226–232 (1976).CrossRef
Metadaten
Titel
Thermomechanical Coupling Model for a Stainless Steel-Clad Plate on Heat Treatment
verfasst von
B. Guan
Y. Zang
F. Yang
X. Y. Yang
Q. Qin
Publikationsdatum
28.03.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00048-x

Weitere Artikel der Ausgabe 1/2019

Strength of Materials 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.