Skip to main content
Erschienen in: Journal of Computational Electronics 1/2019

07.12.2018

Threshold voltage modeling for a Gaussian-doped junctionless FinFET

verfasst von: Shalu Kaundal, Ashwani K. Rana

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents two-dimensional (2D) analytical modeling of the threshold voltage of a double-gate junctionless FinFET with a Gaussian-doped channel by evaluating the 2D electrostatic potential distribution across the active area of the device. The influence of the fringing field lines through the spacer is also included in the modeling. To confirm the validity of the derived analytical model, technology computer-aided design (TCAD) device simulations were carried out. Furthermore, the impact of various design parameters on the threshold voltage was also studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ferain, I., Colinge, C.A., Colinge, J.-P.: Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011)CrossRef Ferain, I., Colinge, C.A., Colinge, J.-P.: Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011)CrossRef
2.
Zurück zum Zitat Riyadi, M.A., Suseno, J.E., Ismail, R.: The future of non planar nanoelectronics MOSFET devices: a review. J. Appl. Sci. 10, 2136–2146 (2010)CrossRef Riyadi, M.A., Suseno, J.E., Ismail, R.: The future of non planar nanoelectronics MOSFET devices: a review. J. Appl. Sci. 10, 2136–2146 (2010)CrossRef
3.
Zurück zum Zitat Ionescu, A.M.: Electronic devices: nanowire transistors made easy. Nat. Nanotechnol. 5, 178–179 (2010)CrossRef Ionescu, A.M.: Electronic devices: nanowire transistors made easy. Nat. Nanotechnol. 5, 178–179 (2010)CrossRef
4.
Zurück zum Zitat Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)CrossRef Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)CrossRef
5.
Zurück zum Zitat Colinge, J., Kranti, A., Yan, R., et al.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron. 65, 33–37 (2011)CrossRef Colinge, J., Kranti, A., Yan, R., et al.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron. 65, 33–37 (2011)CrossRef
6.
Zurück zum Zitat Parihar, M.S., Ghosh, D., Kranti, A.: Ultra low power junctionless MOSFETs for subthreshold logic applications. IEEE Trans. Electron Devices 60, 1540–1546 (2013)CrossRef Parihar, M.S., Ghosh, D., Kranti, A.: Ultra low power junctionless MOSFETs for subthreshold logic applications. IEEE Trans. Electron Devices 60, 1540–1546 (2013)CrossRef
7.
Zurück zum Zitat Baruah, R.K., Paily, R.P.: Double-gate junctionless transistor for low power digital applications. In: 1st IEEE International Conference on ICETACS, Shilong, India, 13–14 Sept (2013) Baruah, R.K., Paily, R.P.: Double-gate junctionless transistor for low power digital applications. In: 1st IEEE International Conference on ICETACS, Shilong, India, 13–14 Sept (2013)
8.
Zurück zum Zitat Ghosh, D., Parihar, M.S., Armstrong, G.A., Kranti, A.: High-performance junctionless MOSFETs for ultra low-power analog/RF applications. IEEE Electron Device Lett. 33, 1477–1479 (2012)CrossRef Ghosh, D., Parihar, M.S., Armstrong, G.A., Kranti, A.: High-performance junctionless MOSFETs for ultra low-power analog/RF applications. IEEE Electron Device Lett. 33, 1477–1479 (2012)CrossRef
9.
Zurück zum Zitat Doria, R.T., Pavanello, M.A., Trevisoli, R.D., Souza, M.D., Lee, C.-W., et al.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58, 2511–2519 (2011)CrossRef Doria, R.T., Pavanello, M.A., Trevisoli, R.D., Souza, M.D., Lee, C.-W., et al.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58, 2511–2519 (2011)CrossRef
10.
Zurück zum Zitat Chebaki, E., Djeffal, F., Ferhati, H., Bentrcia, T.: Improved analog/RF performance of double gate junctionless MOSFET using both gate material engineering and drain/source extensions. Superlattices Microstruct. 92, 80–91 (2016)CrossRef Chebaki, E., Djeffal, F., Ferhati, H., Bentrcia, T.: Improved analog/RF performance of double gate junctionless MOSFET using both gate material engineering and drain/source extensions. Superlattices Microstruct. 92, 80–91 (2016)CrossRef
11.
Zurück zum Zitat Chiang, T.-K.: A quasi two dimensional threshold voltage model for short-channel junctionless double-gate MOSFETs. IEEE Trans. Electron Devices 59, 2284–2289 (2012)CrossRef Chiang, T.-K.: A quasi two dimensional threshold voltage model for short-channel junctionless double-gate MOSFETs. IEEE Trans. Electron Devices 59, 2284–2289 (2012)CrossRef
12.
Zurück zum Zitat Jazaeri, F., Barbut, L., Kaukab, A., Sallese, J.-M.: Analytical model for ultra-thin body junctionless symmetric double gate MOSFETs in subthreshold regime. Solid State Electron. 82, 103–110 (2013)CrossRef Jazaeri, F., Barbut, L., Kaukab, A., Sallese, J.-M.: Analytical model for ultra-thin body junctionless symmetric double gate MOSFETs in subthreshold regime. Solid State Electron. 82, 103–110 (2013)CrossRef
13.
Zurück zum Zitat Jin, X., Liu, X., Kwon, H.-I., Lee, J.-H., Lee, J.-H.: A subthreshold current model for nanoscale short channel junctionless MOSFETs applicable to symmetric and asymmetric double-gate structure. Solid State Electron. 82, 77–81 (2013)CrossRef Jin, X., Liu, X., Kwon, H.-I., Lee, J.-H., Lee, J.-H.: A subthreshold current model for nanoscale short channel junctionless MOSFETs applicable to symmetric and asymmetric double-gate structure. Solid State Electron. 82, 77–81 (2013)CrossRef
14.
Zurück zum Zitat Baruah, R.K., Paily, R.P.: A surface potential based drain current model for short channel symmetric double-gate junctionless transistor. J. Comput. Electron. 15, 45–52 (2016)CrossRef Baruah, R.K., Paily, R.P.: A surface potential based drain current model for short channel symmetric double-gate junctionless transistor. J. Comput. Electron. 15, 45–52 (2016)CrossRef
15.
Zurück zum Zitat Holtij, T., Schwarz, M., Kloes, A., Iniguez, B.: Threshold voltage, and 2D potential modeling within short channel junctionless DG MOSFETs in subthreshold region. Solid State Electron. 90, 107–115 (2013)CrossRef Holtij, T., Schwarz, M., Kloes, A., Iniguez, B.: Threshold voltage, and 2D potential modeling within short channel junctionless DG MOSFETs in subthreshold region. Solid State Electron. 90, 107–115 (2013)CrossRef
16.
Zurück zum Zitat Jiang, C., Liang, R., Wang, J., Xu, J.: A two-dimensional analytical model for short channel junctionless double-gate MOSFETs. AIP Adv. 5, 057122-1-13 (2015) Jiang, C., Liang, R., Wang, J., Xu, J.: A two-dimensional analytical model for short channel junctionless double-gate MOSFETs. AIP Adv. 5, 057122-1-13 (2015)
17.
Zurück zum Zitat Kumari, V., Modi, V., Saxena, M., Gupta, M.: Modeling and simulation of double gate junctionless transistor considering fringing field effects. Solid State Electron. 107, 20–29 (2015)CrossRef Kumari, V., Modi, V., Saxena, M., Gupta, M.: Modeling and simulation of double gate junctionless transistor considering fringing field effects. Solid State Electron. 107, 20–29 (2015)CrossRef
18.
Zurück zum Zitat Gupta, S.K.: Threshold voltage model of junctionless cylindrical surrounding gate MOSFETs including fringing field effects. Superlattices Microstruct. 88, 188–197 (2015)CrossRef Gupta, S.K.: Threshold voltage model of junctionless cylindrical surrounding gate MOSFETs including fringing field effects. Superlattices Microstruct. 88, 188–197 (2015)CrossRef
19.
Zurück zum Zitat Zhang, G., Shao, Z., Zhou, K.: Threshold voltage model of short channel FD-SOI MOSFETs with vertical Gaussian profile. IEEE Trans. Electron Devices 35, 803–809 (2008)CrossRef Zhang, G., Shao, Z., Zhou, K.: Threshold voltage model of short channel FD-SOI MOSFETs with vertical Gaussian profile. IEEE Trans. Electron Devices 35, 803–809 (2008)CrossRef
20.
Zurück zum Zitat Suzuki, K., Kataoka, Y., Nagayama, S., et al.: Analytical model for redistribution profile of ion-implanted impurities during solid phase epitaxy. IEEE Trans. Electron Devices 54, 262–271 (2007)CrossRef Suzuki, K., Kataoka, Y., Nagayama, S., et al.: Analytical model for redistribution profile of ion-implanted impurities during solid phase epitaxy. IEEE Trans. Electron Devices 54, 262–271 (2007)CrossRef
21.
Zurück zum Zitat Mondal, P., Ghosh, B., Bal, P.: Planar junctionless transistor with non-uniform channel doping. Appl. Phys. Lett. 102, 2–5 (2013)CrossRef Mondal, P., Ghosh, B., Bal, P.: Planar junctionless transistor with non-uniform channel doping. Appl. Phys. Lett. 102, 2–5 (2013)CrossRef
22.
Zurück zum Zitat Mondal, P., Ghosh, B., Bal, P., et al.: Effects of non-uniform doping on junctionless transistor. Appl. Phys. A 119, 127–132 (2015)CrossRef Mondal, P., Ghosh, B., Bal, P., et al.: Effects of non-uniform doping on junctionless transistor. Appl. Phys. A 119, 127–132 (2015)CrossRef
23.
Zurück zum Zitat Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1983) Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1983)
26.
Zurück zum Zitat Kim, S.-H., Fossum, J.G., Yang, J.-W.: Modeling and significance of fringe capacitance in non classical CMOS devices with gate-source/drain underlap. IEEE Trans. Electron Devices 53, 2143–2150 (2006)CrossRef Kim, S.-H., Fossum, J.G., Yang, J.-W.: Modeling and significance of fringe capacitance in non classical CMOS devices with gate-source/drain underlap. IEEE Trans. Electron Devices 53, 2143–2150 (2006)CrossRef
Metadaten
Titel
Threshold voltage modeling for a Gaussian-doped junctionless FinFET
verfasst von
Shalu Kaundal
Ashwani K. Rana
Publikationsdatum
07.12.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2019
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1285-7

Weitere Artikel der Ausgabe 1/2019

Journal of Computational Electronics 1/2019 Zur Ausgabe

Neuer Inhalt