Skip to main content
Erschienen in: Journal of Computational Electronics 1/2016

19.07.2015

A surface-potential based drain current model for short-channel symmetric double-gate junctionless transistor

verfasst von: Ratul Kumar Baruah, Roy P. Paily

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Junctionless transistors, which do not have any pn junction in the source-channel-drain path have become an attractive candidate in sub-20 nm regime. They have homogeneous and uniform doping in source-channel-drain region. Despite some similarities with conventional MOSFETs, the charge-potential relationship is quite different in a junctionless transistor, due to its different operational principle. In this report, models for potential and drain current are formulated for shorter channel symmetric double-gate junctionless transistor (DGJLT). The potential model is derived from two dimensional Poisson’s equation using “variable separation technique”. The developed model captures the physics in all regions of device operation i.e., depletion to accumulation region without any fitting parameter. The model is valid for a range of channel doping concentrations, channel thickness and channel length. Threshold voltage and drain-induced barrier lowering values are extracted from the potential model. The model is in good agreement with professional TCAD simulation results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.-M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)CrossRef Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.-M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)CrossRef
2.
Zurück zum Zitat Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Devices 58, 2903–2910 (2011)CrossRef Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Devices 58, 2903–2910 (2011)CrossRef
3.
Zurück zum Zitat Duarte, J.P., Choi, S.-J., Choi, Y.-K.: A full-range drain current model for double-gate junctionless transistors. IEEE Trans. Electron Devices 58, 4219–4225 (2011)CrossRef Duarte, J.P., Choi, S.-J., Choi, Y.-K.: A full-range drain current model for double-gate junctionless transistors. IEEE Trans. Electron Devices 58, 4219–4225 (2011)CrossRef
4.
Zurück zum Zitat Chen, Z., Xiao, Y., Tang, M., Xiong, Y., Huang, J., Li, J., Gu, X., Zhou, Y.: Surface-potential-based drain current model for long-channel junctionless double-gate MOSFETs. IEEE Trans. Electron Devices 59, 3292–3298 (2012)CrossRef Chen, Z., Xiao, Y., Tang, M., Xiong, Y., Huang, J., Li, J., Gu, X., Zhou, Y.: Surface-potential-based drain current model for long-channel junctionless double-gate MOSFETs. IEEE Trans. Electron Devices 59, 3292–3298 (2012)CrossRef
5.
Zurück zum Zitat Sallese, J.-M., Chevillon, N., Lallement, C., Iñiguez, B., Prégaldiny, F.: Charge-based modeling of junctionless double-gate field-effect transistors. IEEE Trans. Electron Devices 58, 2628–2637 (2011)CrossRef Sallese, J.-M., Chevillon, N., Lallement, C., Iñiguez, B., Prégaldiny, F.: Charge-based modeling of junctionless double-gate field-effect transistors. IEEE Trans. Electron Devices 58, 2628–2637 (2011)CrossRef
6.
Zurück zum Zitat Lime, F., Santana, E., Iñiguez, B.: A simple compact model for long-channel junctionless double gate MOSFETs. Solid State Electron. 80, 28–30 (2013)CrossRef Lime, F., Santana, E., Iñiguez, B.: A simple compact model for long-channel junctionless double gate MOSFETs. Solid State Electron. 80, 28–30 (2013)CrossRef
7.
Zurück zum Zitat Duarte, J.P., Choi, S.-J., Choi, Y.-K.: A full-range drain current model for double-gate junctionless transistors. IEEE Trans. Electron Devices 58, 4219–4225 (2011)CrossRef Duarte, J.P., Choi, S.-J., Choi, Y.-K.: A full-range drain current model for double-gate junctionless transistors. IEEE Trans. Electron Devices 58, 4219–4225 (2011)CrossRef
8.
Zurück zum Zitat Duarte, J.P., Choi, S.J., Moon, D.I., Choi, Y.K.: Simple analytical bulk current model for long-channel double-gate junctionless transistors. IEEE Trans. Electron Devices 32, 704–706 (2011)CrossRef Duarte, J.P., Choi, S.J., Moon, D.I., Choi, Y.K.: Simple analytical bulk current model for long-channel double-gate junctionless transistors. IEEE Trans. Electron Devices 32, 704–706 (2011)CrossRef
9.
Zurück zum Zitat Duarte, J.P., Kim, M.-S., Choi, S.-J., Choi, Y.-K.: A compact model of quantum electron density at the subthreshold region for double-gate junctionless transistors. IEEE Trans. Electron Devices 59, 1008–1012 (2012)CrossRef Duarte, J.P., Kim, M.-S., Choi, S.-J., Choi, Y.-K.: A compact model of quantum electron density at the subthreshold region for double-gate junctionless transistors. IEEE Trans. Electron Devices 59, 1008–1012 (2012)CrossRef
10.
Zurück zum Zitat Duarte, J.P., Choi, S.-J., Moon, D.-I., Choi, Y.-K.: A nonpiecewise model for long-channel junctionless cylindrical nanowire FETs. IEEE Electron Device Lett. 33, 155–157 (2012)CrossRef Duarte, J.P., Choi, S.-J., Moon, D.-I., Choi, Y.-K.: A nonpiecewise model for long-channel junctionless cylindrical nanowire FETs. IEEE Electron Device Lett. 33, 155–157 (2012)CrossRef
11.
Zurück zum Zitat Chiang, T.-K.: A quasi-two-dimensional threshold voltage model for short-channel junctionless double-gate MOSFETs. IEEE Trans. Electron Devices 59, 2284–2289 (2012)CrossRef Chiang, T.-K.: A quasi-two-dimensional threshold voltage model for short-channel junctionless double-gate MOSFETs. IEEE Trans. Electron Devices 59, 2284–2289 (2012)CrossRef
12.
Zurück zum Zitat Gnudi, A., Reggiani, S., Gnani, E., Baccarani, G.: Semianalytical model of the subthreshold current in short-channel junctionless symmetric double-gate field-effect transistors. IEEE Trans. Electron Devices 60, 1342–1348 (2013)CrossRef Gnudi, A., Reggiani, S., Gnani, E., Baccarani, G.: Semianalytical model of the subthreshold current in short-channel junctionless symmetric double-gate field-effect transistors. IEEE Trans. Electron Devices 60, 1342–1348 (2013)CrossRef
13.
Zurück zum Zitat Trevisoli, R.D., Doria, R.T., Souza, M., Pavanello, M.A.: A physically-based threshold voltage definition, extraction and analytical model for junctionless nanowire transistors. Solid-State Electron. 90, 12–17 (2013)CrossRef Trevisoli, R.D., Doria, R.T., Souza, M., Pavanello, M.A.: A physically-based threshold voltage definition, extraction and analytical model for junctionless nanowire transistors. Solid-State Electron. 90, 12–17 (2013)CrossRef
14.
Zurück zum Zitat Trevisoli, R.D., Doria, R.T., Pavanelloc, M.A.: Analytical model for the threshold voltage in junctionless nanowire transistors of different geometries. ECS Trans. 39, 147–154 (2011)CrossRef Trevisoli, R.D., Doria, R.T., Pavanelloc, M.A.: Analytical model for the threshold voltage in junctionless nanowire transistors of different geometries. ECS Trans. 39, 147–154 (2011)CrossRef
15.
Zurück zum Zitat Trevisoli, R.D., Doria, R.T., de Souza, M., Pavanello, M.A.: Accounting for short channel effects in the drain current modeling of junctionless nanowire transistors. ECS Trans. 49, 207–214 (2012)CrossRef Trevisoli, R.D., Doria, R.T., de Souza, M., Pavanello, M.A.: Accounting for short channel effects in the drain current modeling of junctionless nanowire transistors. ECS Trans. 49, 207–214 (2012)CrossRef
16.
Zurück zum Zitat Gnudi, A., Reggiani, S., Gnani, E., Baccarani, G.: Analytical model for the threshold voltage variability due to random dopant fluctuations in junctionless FETs, pp. 5–7. SISPAD, Denver (2012) Gnudi, A., Reggiani, S., Gnani, E., Baccarani, G.: Analytical model for the threshold voltage variability due to random dopant fluctuations in junctionless FETs, pp. 5–7. SISPAD, Denver (2012)
17.
Zurück zum Zitat Cerdeira, A., Estrada, M., Iniguez, B., Trevisoli, R.D., Doria, R.T., Souza, M., de, M., Pavanello, A.: Charge-based continuous model for long-channel symmetric double-gate junctionless transistors. Solid-State Electron 85, 59–63 (2013)CrossRef Cerdeira, A., Estrada, M., Iniguez, B., Trevisoli, R.D., Doria, R.T., Souza, M., de, M., Pavanello, A.: Charge-based continuous model for long-channel symmetric double-gate junctionless transistors. Solid-State Electron 85, 59–63 (2013)CrossRef
18.
Zurück zum Zitat Cerdeira, A., Estrada, M., Trevisoli, R.D., Doria, R.T., de Souza, M., Pavanello, M.A.: Analytical model for potential in double-gate juntionless transistors. Symposium on Microelectronics Technology and Devices (2013) Cerdeira, A., Estrada, M., Trevisoli, R.D., Doria, R.T., de Souza, M., Pavanello, M.A.: Analytical model for potential in double-gate juntionless transistors. Symposium on Microelectronics Technology and Devices (2013)
19.
Zurück zum Zitat Jin, X., Liu, X., Wu, M., Chuai, R., Lee, J.-H., Lee, J.-H.: Modelling of the nanoscale channel length effect on the subthreshold characteristcs of junctionless field-effect transistors with a symmetric double-gate structure. J. Phys. D 45, 375102–375107 (2012)CrossRef Jin, X., Liu, X., Wu, M., Chuai, R., Lee, J.-H., Lee, J.-H.: Modelling of the nanoscale channel length effect on the subthreshold characteristcs of junctionless field-effect transistors with a symmetric double-gate structure. J. Phys. D 45, 375102–375107 (2012)CrossRef
20.
Zurück zum Zitat Yesayan, A., Prégaldiny, F., Sallese, J.-M.: Explicit drain current model of junctionless double-gate field-effect transistors. Solid-State Electron. 89, 134–138 (2013)CrossRef Yesayan, A., Prégaldiny, F., Sallese, J.-M.: Explicit drain current model of junctionless double-gate field-effect transistors. Solid-State Electron. 89, 134–138 (2013)CrossRef
21.
Zurück zum Zitat Hu, G., Xiang, P., Ding, Z., Liu, R., Wang, L., Tang, T.-A.: Analytical models for electric potential, threshold voltage, and subthreshold swing of junctionless surrounding-gate transistors. IEEE Trans. Electron Devices 61, 688–695 (2014)CrossRef Hu, G., Xiang, P., Ding, Z., Liu, R., Wang, L., Tang, T.-A.: Analytical models for electric potential, threshold voltage, and subthreshold swing of junctionless surrounding-gate transistors. IEEE Trans. Electron Devices 61, 688–695 (2014)CrossRef
22.
Zurück zum Zitat Woo, J.-H., Choi, J.-M., Choi, Y.-K.: Analytical threshold voltage model of junctionless double-gate MOSFETs with localized charges. IEEE Trans. Electron Devices 60, 2951–2955 (2013)CrossRef Woo, J.-H., Choi, J.-M., Choi, Y.-K.: Analytical threshold voltage model of junctionless double-gate MOSFETs with localized charges. IEEE Trans. Electron Devices 60, 2951–2955 (2013)CrossRef
23.
Zurück zum Zitat Li, C., Zhuang, Y., Di, S., Han, R.: Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Trans. Electron Devices 60, 3655–3662 (2013)CrossRef Li, C., Zhuang, Y., Di, S., Han, R.: Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Trans. Electron Devices 60, 3655–3662 (2013)CrossRef
24.
Zurück zum Zitat Trevisoli, R.D., Doria, R.T., Souza, M., Das, S., Ferain, I., Pavanello, M.A.: Surface-potential-based drain current analytical model for triple-gate junctionless nanowire transistors. IEEE Trans. Electron Devices 59, 3510–3518 (2012) Trevisoli, R.D., Doria, R.T., Souza, M., Das, S., Ferain, I., Pavanello, M.A.: Surface-potential-based drain current analytical model for triple-gate junctionless nanowire transistors. IEEE Trans. Electron Devices 59, 3510–3518 (2012)
25.
Zurück zum Zitat Jiang, C., Liang, R., Wang, J., Xu, J.: A two-dimensional analytical model for short channel junctionless double-gate MOSFETs. AIP Adv. 5, 057122 (2015) Jiang, C., Liang, R., Wang, J., Xu, J.: A two-dimensional analytical model for short channel junctionless double-gate MOSFETs. AIP Adv. 5, 057122 (2015)
26.
Zurück zum Zitat Xi, L., Kwon, H., Lee, J., Lee, J.: A subthreshold current model for nanoscale short channel junctionless MOSFETs applicable to symmetric and asymmetric double-gate structure. Solid-State Electron. 82, 77–81 (2013)CrossRef Xi, L., Kwon, H., Lee, J., Lee, J.: A subthreshold current model for nanoscale short channel junctionless MOSFETs applicable to symmetric and asymmetric double-gate structure. Solid-State Electron. 82, 77–81 (2013)CrossRef
27.
Zurück zum Zitat Holtij, T., Schwarz, M., Kloes, A., Iñíguez, B.: Threshold voltage, and 2D potential modeling within short-channel junctionless DG MOSFETs in subthreshold region. Solid-State Electron. 90, 107–115 (2013)CrossRef Holtij, T., Schwarz, M., Kloes, A., Iñíguez, B.: Threshold voltage, and 2D potential modeling within short-channel junctionless DG MOSFETs in subthreshold region. Solid-State Electron. 90, 107–115 (2013)CrossRef
28.
Zurück zum Zitat Hamid, H.A.E., Guitart, J.R., Iniguez, B.: Two-dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 54, 1402–1408 (2007)CrossRef Hamid, H.A.E., Guitart, J.R., Iniguez, B.: Two-dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 54, 1402–1408 (2007)CrossRef
29.
Zurück zum Zitat Liang, X., Taur, Y.: 2-D analytical solution for SCEs in DG MOSFETs. IEEE Trans. Electron Devices 51, 1385–1391 (2004)CrossRef Liang, X., Taur, Y.: 2-D analytical solution for SCEs in DG MOSFETs. IEEE Trans. Electron Devices 51, 1385–1391 (2004)CrossRef
30.
Zurück zum Zitat Holtij, T., Schwarz, M., Kloes A., Iniguez, B.: 2D analytical potential modeling of junctionless DG MOSFETs in subthreshold region including proposal for calculating the threshold voltage. 13th International Conference on Ultimate Integration on Silicon (ULIS), pp. 81– 84 (2012) Holtij, T., Schwarz, M., Kloes A., Iniguez, B.: 2D analytical potential modeling of junctionless DG MOSFETs in subthreshold region including proposal for calculating the threshold voltage. 13th International Conference on Ultimate Integration on Silicon (ULIS), pp. 81– 84 (2012)
31.
Zurück zum Zitat Atlas User’s Manual: Device Simulation Software (2008) Atlas User’s Manual: Device Simulation Software (2008)
Metadaten
Titel
A surface-potential based drain current model for short-channel symmetric double-gate junctionless transistor
verfasst von
Ratul Kumar Baruah
Roy P. Paily
Publikationsdatum
19.07.2015
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0723-z

Weitere Artikel der Ausgabe 1/2016

Journal of Computational Electronics 1/2016 Zur Ausgabe

Neuer Inhalt