Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2014

01.01.2014

TiO2-Bioactive Glass Nanostructure Composite Films Produced by a Sol-Gel Method: In Vitro Behavior and UV-Enhanced Bioactivity

verfasst von: Marzie Omid-Bakhtiari, Mojtaba Nasr-Esfahani, Abolghasem Nourmohamadi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this study is to develop TiO2, titania, -based composite films for 316 stainless steel substrate and to improve their apatite-forming activity. A series of sol-gel derived bioactive glass (49S) and bioactive glass (49S)-TiO2 films were deposited on the 316L stainless steel substrates by the spin-coating method. Amorphous bioactive glass (49S) film and polycrystalline titania-bioactive glass composite films were obtained after annealing the deposited layers at 600 °C. The microstructure and in vitro bioactivity of the composite films as well as the effect of titania nanopowder content and ultra violet (UV) irradiation on the in vitro bioactivity were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). While bioactivity tests are often carried out within 28-day periods, SEM and EDS data show that, after soaking in SBF for just 7 days, the prepared composite surfaces are covered with an apatite layer. The grown apatite layer consists of spherulites formed by nanosized needle-like aggregates. Fourier transform infrared spectroscopy investigations confirm apatite formation and suggest that the formed apatite is carbonated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N.C. Koseoglu, A. Buyukaksoy, A.Y. Oral, and M.H. Aslan, Hydroxyapatite/Bioactive Glass Films Produced by a Sol-Gel Method: In Vitro Behavior, Adv. Eng. Mater., 2009, 11, p B194–B199CrossRef N.C. Koseoglu, A. Buyukaksoy, A.Y. Oral, and M.H. Aslan, Hydroxyapatite/Bioactive Glass Films Produced by a Sol-Gel Method: In Vitro Behavior, Adv. Eng. Mater., 2009, 11, p B194–B199CrossRef
2.
Zurück zum Zitat J. Brunski, Classes of Materials Used in Medicine: Metals, Biomaterials Science: An Introduction to Materials in Medicine, B. Ratner, A. Hoffman, F. Schoen, and J. Lemons, Ed., Academic Press, London, 1996, p 37 J. Brunski, Classes of Materials Used in Medicine: Metals, Biomaterials Science: An Introduction to Materials in Medicine, B. Ratner, A. Hoffman, F. Schoen, and J. Lemons, Ed., Academic Press, London, 1996, p 37
3.
Zurück zum Zitat G.D. Wintere, Tissue Reaction to Metallic Wear and Corrosion Products in Human Patients, J. Biomed. Mater. Res., 1974, 8, p 11–26CrossRef G.D. Wintere, Tissue Reaction to Metallic Wear and Corrosion Products in Human Patients, J. Biomed. Mater. Res., 1974, 8, p 11–26CrossRef
4.
Zurück zum Zitat L.L. Hench and J. Wilson, An Introduction to Bioceramics, chaps. 1–5, L.L. Hench, Ed., World Scientific Publishing, Singapore, 1993 L.L. Hench and J. Wilson, An Introduction to Bioceramics, chaps. 1–5, L.L. Hench, Ed., World Scientific Publishing, Singapore, 1993
5.
Zurück zum Zitat M.H. Fathi and A.D. Mohammadi, Preparation and Characterization of Sol-Gel Bioactive Glass Coating for Improvement of Biocompatibility of Human Body Implant, Mat. Sci. Eng. A, 2008, 474, p 128–133CrossRef M.H. Fathi and A.D. Mohammadi, Preparation and Characterization of Sol-Gel Bioactive Glass Coating for Improvement of Biocompatibility of Human Body Implant, Mat. Sci. Eng. A, 2008, 474, p 128–133CrossRef
6.
Zurück zum Zitat O. De Sanctis, L. Gómez, N. Pellegri, C. Parodi, A. Marajofsky, and A. Durán, Protective Glass Coatings on Metallic Substrates, J. Non-Cryst. Solids, 1990, 121, p 338–343CrossRef O. De Sanctis, L. Gómez, N. Pellegri, C. Parodi, A. Marajofsky, and A. Durán, Protective Glass Coatings on Metallic Substrates, J. Non-Cryst. Solids, 1990, 121, p 338–343CrossRef
7.
Zurück zum Zitat P. Galliano, J.J. de Damborenea, M.J. Pascual, and A. Duran, Sol-Gel Coatings on 316L Steel for Clinical Applications, J. Sol-Gel Sci. Technol., 1998, 13, p 723–727CrossRef P. Galliano, J.J. de Damborenea, M.J. Pascual, and A. Duran, Sol-Gel Coatings on 316L Steel for Clinical Applications, J. Sol-Gel Sci. Technol., 1998, 13, p 723–727CrossRef
8.
Zurück zum Zitat J. Gallardo, R. Moreno, P. Galliano, and A. Duran, Bioactive Sol-Gel Coatings for Orthopaedic Prosthesis, J. Sol-Gel Sci. Technol., 2000, 19, p 107–111CrossRef J. Gallardo, R. Moreno, P. Galliano, and A. Duran, Bioactive Sol-Gel Coatings for Orthopaedic Prosthesis, J. Sol-Gel Sci. Technol., 2000, 19, p 107–111CrossRef
9.
Zurück zum Zitat L.L. Hench, D. Wheeler, and D. Greespan, Molecular Control of Bioactivity in Sol-Gel Glasses, J. Sol-Gel Sci. Technol., 1998, 13, p 245–250CrossRef L.L. Hench, D. Wheeler, and D. Greespan, Molecular Control of Bioactivity in Sol-Gel Glasses, J. Sol-Gel Sci. Technol., 1998, 13, p 245–250CrossRef
10.
Zurück zum Zitat C.J. Brinker and G.W. Scherer, Sol Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990, p 798 C.J. Brinker and G.W. Scherer, Sol Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990, p 798
11.
Zurück zum Zitat A. Duran, A. Conde, A. Gomez Coedo, T. Dorado, C. Garcıac, and S. Cere, Sol-Gel Coatings for Protection and Bioactivation of Metals Used in Orthopaedic Devices, J. Mater. Chem., 2004, 14, p 2282–2290CrossRef A. Duran, A. Conde, A. Gomez Coedo, T. Dorado, C. Garcıac, and S. Cere, Sol-Gel Coatings for Protection and Bioactivation of Metals Used in Orthopaedic Devices, J. Mater. Chem., 2004, 14, p 2282–2290CrossRef
12.
Zurück zum Zitat J. Ballarre, D.A. López, W.H. Schreiner, A. Durán, and S.M. Ceré, Protective Hybrid Sol-Gel Coatings Containing Bioactive Particles on Surgical Grade Stainless Steel: Surface Characterization, Appl. Surf. Sci., 2007, 253, p 7260–7264CrossRef J. Ballarre, D.A. López, W.H. Schreiner, A. Durán, and S.M. Ceré, Protective Hybrid Sol-Gel Coatings Containing Bioactive Particles on Surgical Grade Stainless Steel: Surface Characterization, Appl. Surf. Sci., 2007, 253, p 7260–7264CrossRef
13.
Zurück zum Zitat J. Ballarre, D.A. López, N.C. Rosero, A. Durán, M. Aparicio, and S.M. Ceré, Electrochemical Evaluation of Multilayer Silica-Metacrylate Hybrid Sol-Gel Coatings Containing Bioactive Particles on Surgical Grade Stainless Steel, Surf. Coat. Technol., 2008, 203, p 80–86CrossRef J. Ballarre, D.A. López, N.C. Rosero, A. Durán, M. Aparicio, and S.M. Ceré, Electrochemical Evaluation of Multilayer Silica-Metacrylate Hybrid Sol-Gel Coatings Containing Bioactive Particles on Surgical Grade Stainless Steel, Surf. Coat. Technol., 2008, 203, p 80–86CrossRef
14.
Zurück zum Zitat H.-W. Kim, H.-E. Kim, V. Salih, and J.C. Knowles, Hydroxyapatite and Titania Sol-Gel Composite Coatings on Titanium for Hard Tissue Implants: Mechanical and In Vitro Biological Performance, J. Biomed. Mater. Res. B, 2005, 72B, p 1–8CrossRef H.-W. Kim, H.-E. Kim, V. Salih, and J.C. Knowles, Hydroxyapatite and Titania Sol-Gel Composite Coatings on Titanium for Hard Tissue Implants: Mechanical and In Vitro Biological Performance, J. Biomed. Mater. Res. B, 2005, 72B, p 1–8CrossRef
15.
Zurück zum Zitat M. Nasr Esfahani, R. Ebrahimi, M.S. Dadash, and S. Karbasi, Bonding Strength, Hardness and Bioactivity of Nano Bioglass-Titania Nano Composite Coating Deposited on NiTi Nails, Curr. Nanosci., 2011, 7, p 568–575CrossRef M. Nasr Esfahani, R. Ebrahimi, M.S. Dadash, and S. Karbasi, Bonding Strength, Hardness and Bioactivity of Nano Bioglass-Titania Nano Composite Coating Deposited on NiTi Nails, Curr. Nanosci., 2011, 7, p 568–575CrossRef
16.
Zurück zum Zitat J. Li, Y. Sun, X. Sun, and J. Qiao, Mechanical and Corrosion-Resistance Performance of Electrodeposited Titania-Nickel Nanocomposite Coatings, J. Surf. Coat. Technol., 2005, 192, p 331–335CrossRef J. Li, Y. Sun, X. Sun, and J. Qiao, Mechanical and Corrosion-Resistance Performance of Electrodeposited Titania-Nickel Nanocomposite Coatings, J. Surf. Coat. Technol., 2005, 192, p 331–335CrossRef
17.
Zurück zum Zitat P. Li, I. Kangasniemi, and K. De Groot, In Vitro and In Vivo Evaluation of Bioactivity of Gel Titania, Bioceramics, 1993, 6, p 41–45 P. Li, I. Kangasniemi, and K. De Groot, In Vitro and In Vivo Evaluation of Bioactivity of Gel Titania, Bioceramics, 1993, 6, p 41–45
18.
Zurück zum Zitat D.B. Haddow, P.F. James, and R. Van Noort, Characterisation of Sol-Gel Surfaces for Biomedical Applications, J. Mater. Sci. Mater. Med., 1996, 7, p 255–260CrossRef D.B. Haddow, P.F. James, and R. Van Noort, Characterisation of Sol-Gel Surfaces for Biomedical Applications, J. Mater. Sci. Mater. Med., 1996, 7, p 255–260CrossRef
19.
Zurück zum Zitat Y. Han and K.W. Xu, Photo-Excited Formation of Bone Apatite-Like Coating on Micro-Arc Oxidized Titanium, J. Biomed. Mater. Res., 2004, 71A, p 608–614CrossRef Y. Han and K.W. Xu, Photo-Excited Formation of Bone Apatite-Like Coating on Micro-Arc Oxidized Titanium, J. Biomed. Mater. Res., 2004, 71A, p 608–614CrossRef
20.
Zurück zum Zitat X. Liu, X. Zhao, B. Li, C. Cao, Y. Dong, C. Ding, and P.K. Chu, UV-Irradiation-Induced Bioactivity on TiO2 Coatings with Nanostructural Surface, Acta Biomater., 2008, 4, p 544–552CrossRef X. Liu, X. Zhao, B. Li, C. Cao, Y. Dong, C. Ding, and P.K. Chu, UV-Irradiation-Induced Bioactivity on TiO2 Coatings with Nanostructural Surface, Acta Biomater., 2008, 4, p 544–552CrossRef
21.
Zurück zum Zitat M.S. Dadash, S. Karbasi, M. Nasr-Esfahani, R. Ebrahimi, and H. Vali, Influence of Calcinated and Non Calcinated Nanobioglass Particles on Hardness and Bioactivity of Sol-Gel Derived TiO2-SiO2 Nano Composite Coatings on Stainless Steel Substrates, J. Mater. Sci. Mater. Med., 2011, 22, p 829–838CrossRef M.S. Dadash, S. Karbasi, M. Nasr-Esfahani, R. Ebrahimi, and H. Vali, Influence of Calcinated and Non Calcinated Nanobioglass Particles on Hardness and Bioactivity of Sol-Gel Derived TiO2-SiO2 Nano Composite Coatings on Stainless Steel Substrates, J. Mater. Sci. Mater. Med., 2011, 22, p 829–838CrossRef
22.
Zurück zum Zitat T. Kokubo, H. Kushitani, S. Sakka, T. Kitshugi, and T. Yamamuro, Solutions Able to Reproduce In Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W, J. Biomed. Mater. Res., 1990, 24, p 721–734CrossRef T. Kokubo, H. Kushitani, S. Sakka, T. Kitshugi, and T. Yamamuro, Solutions Able to Reproduce In Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W, J. Biomed. Mater. Res., 1990, 24, p 721–734CrossRef
23.
Zurück zum Zitat J. Liu and X. Miao, Sol-Gel Derived Bioglass as a Coating Material for Porous Alumina Scaffolds, Ceram. Int., 2004, 30, p 1781–1785CrossRef J. Liu and X. Miao, Sol-Gel Derived Bioglass as a Coating Material for Porous Alumina Scaffolds, Ceram. Int., 2004, 30, p 1781–1785CrossRef
24.
Zurück zum Zitat C.M. Whang, C.S. Yeo, and Y.H. Kim, Preparation and Characterization of Sol-Gel Derived SiO2-TiO2-PDMS Composite Films, Bull. Korean Chem. Soc., 2001, 22, p 1366–1370 C.M. Whang, C.S. Yeo, and Y.H. Kim, Preparation and Characterization of Sol-Gel Derived SiO2-TiO2-PDMS Composite Films, Bull. Korean Chem. Soc., 2001, 22, p 1366–1370
25.
Zurück zum Zitat W. Chena, J. Zhang, Q. Fang, S. Li, J. Wu, F. Li, and K. Jiang, Sol-Gel Preparation of Thick Titania Coatings Aided by Organic Binder Materials, Sensor. Actuat. B-Chem., 2004, 100, p 195–199CrossRef W. Chena, J. Zhang, Q. Fang, S. Li, J. Wu, F. Li, and K. Jiang, Sol-Gel Preparation of Thick Titania Coatings Aided by Organic Binder Materials, Sensor. Actuat. B-Chem., 2004, 100, p 195–199CrossRef
26.
Zurück zum Zitat P. Saravanapavan, J.R. Jones, R.S. Pryce, and L.L. Hench, Bioactivity of Gel-Glass Powders in the CaO-SiO2 System: A Comparison with Ternary (CaO-P2O5-SiO2) and Quaternary Glasses (SiO2-CaO-P2O5-Na2O), J. Biomed. Mater. Res., 2003, 66A, p 110–119CrossRef P. Saravanapavan, J.R. Jones, R.S. Pryce, and L.L. Hench, Bioactivity of Gel-Glass Powders in the CaO-SiO2 System: A Comparison with Ternary (CaO-P2O5-SiO2) and Quaternary Glasses (SiO2-CaO-P2O5-Na2O), J. Biomed. Mater. Res., 2003, 66A, p 110–119CrossRef
27.
Zurück zum Zitat H.H. Beherei, K.R. Mohamed, and G.T. El-Bassyouni, Fabrication and Characterization of Bioactive Glass (45S5)/Titania Biocomposites, Ceram. Int., 2009, 35, p 1991–1997CrossRef H.H. Beherei, K.R. Mohamed, and G.T. El-Bassyouni, Fabrication and Characterization of Bioactive Glass (45S5)/Titania Biocomposites, Ceram. Int., 2009, 35, p 1991–1997CrossRef
28.
Zurück zum Zitat D.H.J. Teeuw, M. de Haas, and J.Th.M. De Hosson, Residual Stress Field in Sol-Gel-Derived Thin TiO2 Layers, J. Mater. Res., 1999, 14, p 1896–1903CrossRef D.H.J. Teeuw, M. de Haas, and J.Th.M. De Hosson, Residual Stress Field in Sol-Gel-Derived Thin TiO2 Layers, J. Mater. Res., 1999, 14, p 1896–1903CrossRef
29.
Zurück zum Zitat A. Krajewski, A. Ravaglioli, G. De Portu, and R. Visani, Physicochemical Approach to Improving Adherence Between Steel and Bioactive Glass, Am. Ceram. Soc. Bull., 1985, 64, p 679–683 A. Krajewski, A. Ravaglioli, G. De Portu, and R. Visani, Physicochemical Approach to Improving Adherence Between Steel and Bioactive Glass, Am. Ceram. Soc. Bull., 1985, 64, p 679–683
30.
Zurück zum Zitat M.L. Scott, A Review of UV Coating Material Properties, U.S. National Bureau Standards Spec. Publ., 1985, 688, p 329–332 M.L. Scott, A Review of UV Coating Material Properties, U.S. National Bureau Standards Spec. Publ., 1985, 688, p 329–332
31.
Zurück zum Zitat D. Bellucci, V. Cannillo, and A. Sola, Coefficient of Thermal Expansion of Bioactive Glasses: Available Literature Data and Analytical Equation Estimates, Ceram. Int., 2011, 37, p 2963–2972CrossRef D. Bellucci, V. Cannillo, and A. Sola, Coefficient of Thermal Expansion of Bioactive Glasses: Available Literature Data and Analytical Equation Estimates, Ceram. Int., 2011, 37, p 2963–2972CrossRef
32.
Zurück zum Zitat T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915CrossRef T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915CrossRef
33.
Zurück zum Zitat K.H. Karlsson, Bioactivity of Glass and Bioactive Glasses for Bone Repair, Glass Technol. A, 2004, 45, p 157–161 K.H. Karlsson, Bioactivity of Glass and Bioactive Glasses for Bone Repair, Glass Technol. A, 2004, 45, p 157–161
34.
Zurück zum Zitat Y. Ebisawa, T. Kokubo, K. Ohura, and T. Yamamuro, Bioactivity of CaO·SiO2-Based Glasses: In Vitro Evaluation, J. Mater. Sci. Mater. Med., 1990, 1, p 239–244CrossRef Y. Ebisawa, T. Kokubo, K. Ohura, and T. Yamamuro, Bioactivity of CaO·SiO2-Based Glasses: In Vitro Evaluation, J. Mater. Sci. Mater. Med., 1990, 1, p 239–244CrossRef
35.
Zurück zum Zitat T. Kasuga, H. Kondo, and M. Nogami, Apatite Formation on TiO2 in Simulated Body Fluid, J. Cryst. Growth, 2002, 235, p 235–240CrossRef T. Kasuga, H. Kondo, and M. Nogami, Apatite Formation on TiO2 in Simulated Body Fluid, J. Cryst. Growth, 2002, 235, p 235–240CrossRef
36.
Zurück zum Zitat H. Maeda, T. Kasuga, and M. Nogami, Apatite Formation on Titania-Vaterite Powders in Simulated Body Fluid, J. Eur. Ceram. Soc., 2004, 24, p 2125–2130CrossRef H. Maeda, T. Kasuga, and M. Nogami, Apatite Formation on Titania-Vaterite Powders in Simulated Body Fluid, J. Eur. Ceram. Soc., 2004, 24, p 2125–2130CrossRef
37.
Zurück zum Zitat C. Ohtsuki, H. Iida, S. Nakamura, and A. Osaka, Bioactivity of Titanium Treated with Hydrogen Peroxide Solutions Containing Metal Chlorides, J. Biomed. Mater. Res., 1997, 35, p 39–47CrossRef C. Ohtsuki, H. Iida, S. Nakamura, and A. Osaka, Bioactivity of Titanium Treated with Hydrogen Peroxide Solutions Containing Metal Chlorides, J. Biomed. Mater. Res., 1997, 35, p 39–47CrossRef
38.
Zurück zum Zitat P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, and K.A. de Groot, The Role of Hydrated Silica, Titania, and Alumina in Inducing Apatite on Implants, J. Biomed. Mater. Res., 1994, 28, p 7–15CrossRef P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, and K.A. de Groot, The Role of Hydrated Silica, Titania, and Alumina in Inducing Apatite on Implants, J. Biomed. Mater. Res., 1994, 28, p 7–15CrossRef
39.
Zurück zum Zitat B.O. Fowlcr, Infrared Studies of Apatites, I. Vibrational Assignments for Calcium, Strontium and Barium Hydroxyapatites Utilizing Isotopic Substitution, Inorg. Chem., 1974, 13, p 194CrossRef B.O. Fowlcr, Infrared Studies of Apatites, I. Vibrational Assignments for Calcium, Strontium and Barium Hydroxyapatites Utilizing Isotopic Substitution, Inorg. Chem., 1974, 13, p 194CrossRef
40.
Zurück zum Zitat A. Fujishima, X. Zhang, and D.A. Tryk, TiO2 Photocatalysis and Related Surface Phenomena, Surf. Sci. Rep., 2008, 63, p 515–582CrossRef A. Fujishima, X. Zhang, and D.A. Tryk, TiO2 Photocatalysis and Related Surface Phenomena, Surf. Sci. Rep., 2008, 63, p 515–582CrossRef
41.
Zurück zum Zitat S. Kaneko, K. Tsuru, S. Hayakawa, S. Takemoto, C. Ohtsuki, T. Ozaki, H. Inoue, and A. Osaka, In Vivo Evaluation of Bone-Bonding of Titanium Metal Chemically Treated with a Hydrogen Peroxide Solution Containing Tantalum Chloride, Biomaterials, 2001, 22, p 875–881CrossRef S. Kaneko, K. Tsuru, S. Hayakawa, S. Takemoto, C. Ohtsuki, T. Ozaki, H. Inoue, and A. Osaka, In Vivo Evaluation of Bone-Bonding of Titanium Metal Chemically Treated with a Hydrogen Peroxide Solution Containing Tantalum Chloride, Biomaterials, 2001, 22, p 875–881CrossRef
42.
Zurück zum Zitat X.X. Wang, S. Hayakawa, K. Tsuru, and A. Osaka, A Comparative Study of In Vitro Apatite Deposition on Heat-, H2O2-, and NaOH-Treated Titanium Surfaces, J. Biomed. Mater. Res., 2001, 54, p 172–178CrossRef X.X. Wang, S. Hayakawa, K. Tsuru, and A. Osaka, A Comparative Study of In Vitro Apatite Deposition on Heat-, H2O2-, and NaOH-Treated Titanium Surfaces, J. Biomed. Mater. Res., 2001, 54, p 172–178CrossRef
43.
Zurück zum Zitat K. Uetsuki, H. Kaneda, Y. Shirosaki, S. Hayakawa, and A. Osaka, Effects of UV-Irradiation on In Vitro Apatite-Forming Ability of TiO2 Layers, Mater. Sci. Eng. B, 2010, 173, p 213–215CrossRef K. Uetsuki, H. Kaneda, Y. Shirosaki, S. Hayakawa, and A. Osaka, Effects of UV-Irradiation on In Vitro Apatite-Forming Ability of TiO2 Layers, Mater. Sci. Eng. B, 2010, 173, p 213–215CrossRef
Metadaten
Titel
TiO2-Bioactive Glass Nanostructure Composite Films Produced by a Sol-Gel Method: In Vitro Behavior and UV-Enhanced Bioactivity
verfasst von
Marzie Omid-Bakhtiari
Mojtaba Nasr-Esfahani
Abolghasem Nourmohamadi
Publikationsdatum
01.01.2014
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2014
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0639-3

Weitere Artikel der Ausgabe 1/2014

Journal of Materials Engineering and Performance 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.