Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 3/2021

25.06.2021 | Research Paper

Topology optimization of load-bearing capacity

verfasst von: Leyla Mourad, Jeremy Bleyer, Romain Mesnil, Joanna Nseir, Karam Sab, Wassim Raphael

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work addresses the problem of maximizing a structure load-bearing capacity subject to given material strength properties and a material volume constraint. This problem can be viewed as an extension to limit analysis problems which consist in finding the maximum load capacity for a fixed geometry. We show that it is also closely linked to the problem of minimizing the total volume under the constraint of carrying a fixed loading. Formulating these topology optimization problems using a continuous field representing a fictitious material density yields convex optimization problems which can be solved efficiently using state-of-the-art solvers used for limit analysis problems. We further analyze these problems by discussing the choice of the material strength criterion, especially when considering materials with asymmetric tensile/compressive strengths. In particular, we advocate the use of a L1-Rankine criterion which tends to promote uniaxial stress fields as in truss-like structures. We show that the considered problem is equivalent to a constrained Michell truss problem. Finally, following the idea of the SIMP method, the obtained continuous topology is post-processed by an iterative procedure penalizing intermediate densities. Benchmark examples are first considered to illustrate the method overall efficiency while final examples focus more particularly on no-tension materials, illustrating how the method is able to reproduce known structural patterns of masonry-like structures. This paper is accompanied by a Python package based on the FEniCS finite-element software library.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Allaire G (1997) The homogenization method for topology and shape optimization. In: Topology optimization in structural mechanics. Springer, pp 101–133 Allaire G (1997) The homogenization method for topology and shape optimization. In: Topology optimization in structural mechanics. Springer, pp 101–133
Zurück zum Zitat Allaire G (2012) Shape optimization by the homogenization method, vol 146. Springer Science & Business Media, Berlin Allaire G (2012) Shape optimization by the homogenization method, vol 146. Springer Science & Business Media, Berlin
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRef Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRef
Zurück zum Zitat Amir O (2017) Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity. Struct Multidiscip Optim 55(5):1797–1818MathSciNetCrossRef Amir O (2017) Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity. Struct Multidiscip Optim 55(5):1797–1818MathSciNetCrossRef
Zurück zum Zitat Bach F, Jenatton R, Mairal J, Obozinski G, et al. (2011) Convex optimization with sparsity-inducing norms. Optim Mach Learn 5:19–53MATH Bach F, Jenatton R, Mairal J, Obozinski G, et al. (2011) Convex optimization with sparsity-inducing norms. Optim Mach Learn 5:19–53MATH
Zurück zum Zitat Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications, 2. ed., corr. printing edn. Engineering online library. Springer. OCLC: 249399186 Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications, 2. ed., corr. printing edn. Engineering online library. Springer. OCLC: 249399186
Zurück zum Zitat Bisbos C, Pardalos P (2007) Second-order cone and semidefinite representations of material failure criteria. J Optim Theory Appl 134(2):275–301MathSciNetCrossRef Bisbos C, Pardalos P (2007) Second-order cone and semidefinite representations of material failure criteria. J Optim Theory Appl 134(2):275–301MathSciNetCrossRef
Zurück zum Zitat Bleyer J, Hassen G (2020) Automated formulation and resolution of limit analysis problems. arXiv:2005.04779 Bleyer J, Hassen G (2020) Automated formulation and resolution of limit analysis problems. arXiv:2005.​04779
Zurück zum Zitat Block P, Ochsendorf J (2007) Thrust network analysis: a new methodology for three-dimensional equilibrium. Journal of the International Association for Shell and Spatial Structures, vol 48 Block P, Ochsendorf J (2007) Thrust network analysis: a new methodology for three-dimensional equilibrium. Journal of the International Association for Shell and Spatial Structures, vol 48
Zurück zum Zitat Block P, Rippmann M, Van Mele T (2017) Compressive assemblies: bottom-up performance for a new form of construction. AD Architectural Design 87(4):104–109. https://doi.org/10.1002/ad.2202. Special issue S. Tibbits (Ed.) - Autonomous Assembly: Designing for a new era of collective constructionCrossRef Block P, Rippmann M, Van Mele T (2017) Compressive assemblies: bottom-up performance for a new form of construction. AD Architectural Design 87(4):104–109. https://​doi.​org/​10.​1002/​ad.​2202. Special issue S. Tibbits (Ed.) - Autonomous Assembly: Designing for a new era of collective constructionCrossRef
Zurück zum Zitat Bruyneel M, Duysinx P (2005) Note on topology optimization of continuum structures including self-weight. Struct Multidiscip Optim 29(4):245–256CrossRef Bruyneel M, Duysinx P (2005) Note on topology optimization of continuum structures including self-weight. Struct Multidiscip Optim 29(4):245–256CrossRef
Zurück zum Zitat Chen WF (2007) Plasticity in reinforced concrete. J Ross Publishing Chen WF (2007) Plasticity in reinforced concrete. J Ross Publishing
Zurück zum Zitat Chen WF (2013) Limit analysis and soil plasticity. Elsevier Chen WF (2013) Limit analysis and soil plasticity. Elsevier
Zurück zum Zitat Damkilde L, Krenk S (1997) Limits—a system for limit state analysis and optimal material layout. Computers & Structures 64(1-4):709–718CrossRef Damkilde L, Krenk S (1997) Limits—a system for limit state analysis and optimal material layout. Computers & Structures 64(1-4):709–718CrossRef
Zurück zum Zitat Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478MathSciNetCrossRef Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478MathSciNetCrossRef
Zurück zum Zitat Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordMATH Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordMATH
Zurück zum Zitat Horvath A (2004) Construction materials and the environment. Annu Rev Environ Resour 29:181–204CrossRef Horvath A (2004) Construction materials and the environment. Annu Rev Environ Resour 29:181–204CrossRef
Zurück zum Zitat Kammoun Z, Smaoui H (2014) A direct approach for continuous topology optimization subject to admissible loading. Comptes Rendus Mécanique 342(9):520–531CrossRef Kammoun Z, Smaoui H (2014) A direct approach for continuous topology optimization subject to admissible loading. Comptes Rendus Mécanique 342(9):520–531CrossRef
Zurück zum Zitat Kilian M, Pellis D, Wallner J, Pottmann H (2017) Material-minimizing forms and structures. ACM Transactions on Graphics (TOG) 36(6):173CrossRef Kilian M, Pellis D, Wallner J, Pottmann H (2017) Material-minimizing forms and structures. ACM Transactions on Graphics (TOG) 36(6):173CrossRef
Zurück zum Zitat Krabbenhøft K, Lyamin AV, Sloan SW (2008) Three-dimensional mohr–coulomb limit analysis using semidefinite programming. Commun Numer Methods Eng 24(11):1107–1119MathSciNetCrossRef Krabbenhøft K, Lyamin AV, Sloan SW (2008) Three-dimensional mohr–coulomb limit analysis using semidefinite programming. Commun Numer Methods Eng 24(11):1107–1119MathSciNetCrossRef
Zurück zum Zitat Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second-order cone programming. Linear Algebra and its Applications 284(1-3):193–228MathSciNetCrossRef Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second-order cone programming. Linear Algebra and its Applications 284(1-3):193–228MathSciNetCrossRef
Zurück zum Zitat Makrodimopoulos A, Martin C (2007) Upper bound limit analysis using simplex strain elements and second-order cone programming. Int J Numer Anal Methods Geomech 31(6):835–865CrossRef Makrodimopoulos A, Martin C (2007) Upper bound limit analysis using simplex strain elements and second-order cone programming. Int J Numer Anal Methods Geomech 31(6):835–865CrossRef
Zurück zum Zitat Mele TV, Mehrotra A, Echenagucia MT, Frick U, Ochsendorf J, Dejong M, Block P (2016) Form finding and structural analysis of a freeform stone vault. In: Proceedings of IASS Annual Symposia. International Association for Shell and Spatial Structures (IASS), vol 8, pp 1–10 Mele TV, Mehrotra A, Echenagucia MT, Frick U, Ochsendorf J, Dejong M, Block P (2016) Form finding and structural analysis of a freeform stone vault. In: Proceedings of IASS Annual Symposia. International Association for Shell and Spatial Structures (IASS), vol 8, pp 1–10
Zurück zum Zitat Michell AGM (1904) LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 8(47):589–597CrossRef Michell AGM (1904) LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 8(47):589–597CrossRef
Zurück zum Zitat Nielsen MP, Hoang LC (2016) Limit analysis and concrete plasticity. CRC Press, Boca RatonCrossRef Nielsen MP, Hoang LC (2016) Limit analysis and concrete plasticity. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41(8):1417–1434MathSciNetCrossRef Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41(8):1417–1434MathSciNetCrossRef
Zurück zum Zitat Salençon J (1983) Calcul à la rupture et analyse limite. Presses de l’Ecole Nationale des Ponts et Chaussées Salençon J (1983) Calcul à la rupture et analyse limite. Presses de l’Ecole Nationale des Ponts et Chaussées
Zurück zum Zitat Salençon J. (2013) Yield design. London, Hoboken: ISTE Ltd., John Wiley & Sons Inc Salençon J. (2013) Yield design. London, Hoboken: ISTE Ltd., John Wiley & Sons Inc
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424CrossRef
Zurück zum Zitat Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 12(1):61–77CrossRef Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 12(1):61–77CrossRef
Zurück zum Zitat Strang G, Kohn RV (1983) Hencky-Prandtl nets and constrained Michell trusses. Comput Methods Appl Mech Eng 36(2):207–222MathSciNetCrossRef Strang G, Kohn RV (1983) Hencky-Prandtl nets and constrained Michell trusses. Comput Methods Appl Mech Eng 36(2):207–222MathSciNetCrossRef
Zurück zum Zitat Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Struct Multidiscipl Optim 54(4):783–793MathSciNetCrossRef Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Struct Multidiscipl Optim 54(4):783–793MathSciNetCrossRef
Metadaten
Titel
Topology optimization of load-bearing capacity
verfasst von
Leyla Mourad
Jeremy Bleyer
Romain Mesnil
Joanna Nseir
Karam Sab
Wassim Raphael
Publikationsdatum
25.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 3/2021
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-021-02923-1

Weitere Artikel der Ausgabe 3/2021

Structural and Multidisciplinary Optimization 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.