Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2017

10.12.2016 | RESEARCH PAPER

Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements

verfasst von: Guodong Zhang, Lei Li, Kapil Khandelwal

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The focus of this paper is on consistent and accurate adjoint sensitivity analyses for structural topology optimization with anisotropic plastic materials under plane strain conditions. In order to avoid the locking issue, the Enhanced Assumed Strain (EAS) elements are adopted in the finite element discretization, and the anisotropic Hoffman plasticity model, which can simulate the strength differences in tension and compression, is incorporated within the framework of density-based topology optimization. The path-dependent sensitivity analysis is presented wherein the enhanced element parameters are consistently incorporated in the constraints. The objective of topology optimization is to maximize the plastic work. Several numerical examples are presented to show the effectiveness of the proposed framework. The results illustrate that the optimized topologies are highly dependent on the plastic anisotropic material properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRefMATH Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRefMATH
Zurück zum Zitat Banabic D (2010) Plastic Behaviour of Sheet Metal. In: Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 27–140. doi: 10.1007/978-3-540-88113-1_2 Banabic D (2010) Plastic Behaviour of Sheet Metal. In: Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 27–140. doi: 10.1007/978-3-540-88113-1_2
Zurück zum Zitat Bazeley G, Cheung YK, Irons BM, Zienkiewicz O Triangular elements in plate bending—conforming and nonconforming solutions. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics, 1965. Wright Patterson AF Base, Ohio, pp 547–576 Bazeley G, Cheung YK, Irons BM, Zienkiewicz O Triangular elements in plate bending—conforming and nonconforming solutions. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics, 1965. Wright Patterson AF Base, Ohio, pp 547–576
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer, BerlinMATH Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer, BerlinMATH
Zurück zum Zitat Bogomolny M, Amir O (2012) Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling. Int J Numer Methods Eng 90(13):1578–1597CrossRefMATH Bogomolny M, Amir O (2012) Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling. Int J Numer Methods Eng 90(13):1578–1597CrossRefMATH
Zurück zum Zitat Bruggi M (2016a) A numerical method to generate optimal load paths in plain and reinforced concrete structures. Comput Struct 170:26–36 Bruggi M (2016a) A numerical method to generate optimal load paths in plain and reinforced concrete structures. Comput Struct 170:26–36
Zurück zum Zitat Bruggi M (2016b) Topology optimization with mixed finite elements on regular grids. Comput Methods Appl Mech Eng 305:133–153 Bruggi M (2016b) Topology optimization with mixed finite elements on regular grids. Comput Methods Appl Mech Eng 305:133–153
Zurück zum Zitat Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384MathSciNetCrossRefMATH Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384MathSciNetCrossRefMATH
Zurück zum Zitat Bruggi M, Duysinx P (2013) A stress–based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48(2):311–326MathSciNetCrossRef Bruggi M, Duysinx P (2013) A stress–based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48(2):311–326MathSciNetCrossRef
Zurück zum Zitat Buhl T, Pedersen CB, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef Buhl T, Pedersen CB, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef
Zurück zum Zitat Christensen PW, Klarbring A (2008) An introduction to structural optimization, vol 153. Springer Science & Business Media Christensen PW, Klarbring A (2008) An introduction to structural optimization, vol 153. Springer Science & Business Media
Zurück zum Zitat Crisfield M (1997) Non-linear finite element analysis of solids and structures: Volume 1 Essentials. John Wiley & Sons Crisfield M (1997) Non-linear finite element analysis of solids and structures: Volume 1 Essentials. John Wiley & Sons
Zurück zum Zitat De Borst R, Feenstra PH (1990) Studies in anisotropic plasticity with reference to the Hill criterion. Int J Numer Methods Eng 29(2):315–336CrossRefMATH De Borst R, Feenstra PH (1990) Studies in anisotropic plasticity with reference to the Hill criterion. Int J Numer Methods Eng 29(2):315–336CrossRefMATH
Zurück zum Zitat de Souza Neto EA, Peric D, Owen DRJ (2011) Computational methods for plasticity: theory and applications. John Wiley & Sons de Souza Neto EA, Peric D, Owen DRJ (2011) Computational methods for plasticity: theory and applications. John Wiley & Sons
Zurück zum Zitat Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef
Zurück zum Zitat Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review*. Appl Mech Rev 54(4):331–390CrossRef Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review*. Appl Mech Rev 54(4):331–390CrossRef
Zurück zum Zitat Jones RM (1998) Mechanics of composite materials. CRC press Jones RM (1998) Mechanics of composite materials. CRC press
Zurück zum Zitat Kasper EP, Taylor RL (1997) A Mixed Enhanced Strain Method: Linear Problems Department of Civil and Environmental Engineering, University of California at Berkeley; Report No.: UCB/SEMM-97/02, Berkeley Kasper EP, Taylor RL (1997) A Mixed Enhanced Strain Method: Linear Problems Department of Civil and Environmental Engineering, University of California at Berkeley; Report No.: UCB/SEMM-97/02, Berkeley
Zurück zum Zitat Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim 52(3):507–526MathSciNetCrossRef Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim 52(3):507–526MathSciNetCrossRef
Zurück zum Zitat Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47(1):37–48MathSciNetCrossRefMATH Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47(1):37–48MathSciNetCrossRefMATH
Zurück zum Zitat Koh CG, Owen DRJ, Perić D (1995) Explicit dynamic analysis of elasto-plastic laminated composite shells: implementation of non-iterative stress update schemes for the Hoffman yield criterion. Comput Mech 16(5):307–314. doi:10.1007/bf00350720 CrossRefMATH Koh CG, Owen DRJ, Perić D (1995) Explicit dynamic analysis of elasto-plastic laminated composite shells: implementation of non-iterative stress update schemes for the Hoffman yield criterion. Comput Mech 16(5):307–314. doi:10.​1007/​bf00350720 CrossRefMATH
Zurück zum Zitat Li L, Khandelwal K (2014) Two-point gradient-based MMA (TGMMA) algorithm for topology optimization. Comput Struct 131:34–45CrossRef Li L, Khandelwal K (2014) Two-point gradient-based MMA (TGMMA) algorithm for topology optimization. Comput Struct 131:34–45CrossRef
Zurück zum Zitat Li L, Khandelwal K (2015a) Topology optimization of structures with length-scale effects using elasticity with microstructure theory. Comput Struct 157:165–177 Li L, Khandelwal K (2015a) Topology optimization of structures with length-scale effects using elasticity with microstructure theory. Comput Struct 157:165–177
Zurück zum Zitat Li L, Khandelwal K (2015b) Volume preserving projection filters and continuation methods in topology optimization. Eng Struct 85:144–161 Li L, Khandelwal K (2015b) Volume preserving projection filters and continuation methods in topology optimization. Eng Struct 85:144–161
Zurück zum Zitat Li X, Duxbury PG, Lyons P (1994) Considerations for the application and numerical implementation of strain hardening with the hoffman yield criterion. Comput Struct 52(4):633-644. doi:10.1016/0045-7949(94)90345-X Li X, Duxbury PG, Lyons P (1994) Considerations for the application and numerical implementation of strain hardening with the hoffman yield criterion. Comput Struct 52(4):633-644. doi:10.​1016/​0045-7949(94)90345-X
Zurück zum Zitat Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421MathSciNetCrossRefMATH Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421MathSciNetCrossRefMATH
Zurück zum Zitat Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker–Prager yield stress constraints. Comput Struct 90:65–75CrossRef Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker–Prager yield stress constraints. Comput Struct 90:65–75CrossRef
Zurück zum Zitat Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91CrossRef Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91CrossRef
Zurück zum Zitat Michaleris P, Tortorelli DA, Vidal CA (1994) Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37(14):2471–2499CrossRefMATH Michaleris P, Tortorelli DA, Vidal CA (1994) Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37(14):2471–2499CrossRefMATH
Zurück zum Zitat Nakshatrala P, Tortorelli D (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326MathSciNetCrossRef Nakshatrala P, Tortorelli D (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326MathSciNetCrossRef
Zurück zum Zitat Rozvany G, Zhou M (1991) Applications of the COC algorithm in layout optimization. In: Engineering optimization in design processes. Springer, pp 59–70 Rozvany G, Zhou M (1991) Applications of the COC algorithm in layout optimization. In: Engineering optimization in design processes. Springer, pp 59–70
Zurück zum Zitat Schwarz S, Ramm E (2001) Sensitivity analysis and optimization for non-linear structural response. Eng Comput 18(3/4):610–641CrossRefMATH Schwarz S, Ramm E (2001) Sensitivity analysis and optimization for non-linear structural response. Eng Comput 18(3/4):610–641CrossRefMATH
Zurück zum Zitat Schwarz S, Maute K, Ramm E (2001) Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng 190(15):2135–2155CrossRefMATH Schwarz S, Maute K, Ramm E (2001) Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng 190(15):2135–2155CrossRefMATH
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATH
Zurück zum Zitat Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Structural and Multidisciplinary Optimization: 1–11 Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Structural and Multidisciplinary Optimization: 1–11
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246MathSciNetCrossRefMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246MathSciNetCrossRefMATH
Zurück zum Zitat Wilson E, Taylor R, Doherty W, Ghaboussi J (1973) Incompatible displacement models. In: Fenves S, Perrone N, Robinson A, Schnobrich W (eds) Numerical and computer methods in structural mechanics. Academic, New York, pp 43–57 Wilson E, Taylor R, Doherty W, Ghaboussi J (1973) Incompatible displacement models. In: Fenves S, Perrone N, Robinson A, Schnobrich W (eds) Numerical and computer methods in structural mechanics. Academic, New York, pp 43–57
Zurück zum Zitat Xie Y, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef Xie Y, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef
Metadaten
Titel
Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements
verfasst von
Guodong Zhang
Lei Li
Kapil Khandelwal
Publikationsdatum
10.12.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2017
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-016-1612-1

Weitere Artikel der Ausgabe 6/2017

Structural and Multidisciplinary Optimization 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.