Skip to main content
Erschienen in: Acta Mechanica 6/2020

09.03.2020 | Original Paper

Torsional surface wave propagation in a transversely isotropic FG substrate with piezoelectric over-layer within surface/interface theory

verfasst von: C. Enzevaee, H. M. Shodja

Erschienen in: Acta Mechanica | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Propagation of the torsional surface waves in a medium consisting of a functionally graded (FG) substrate bonded to a thin piezoelectric over-layer has been analytically formulated in the mathematical framework of surface/interface elasticity theory. In the cases where the wavelength and/or the thickness of the over-layer are comparable to the surface/interface characteristic length, then the surface/interface effects are not negligible. It is assumed that the over-layer is made of hexagonal 622 crystals with a single axis of rotational symmetry coinciding with the axis of polarization. The half-space is made of an FG transversely isotropic material in which the elasticity tensor and the mass density vary linearly with depth. Accounting for the surface/interface effects, the pertinent dispersion relation is derived analytically and verified for five different limiting cases of the proposed problem. The effect of the inhomogeneity parameters of the FG half-space and the surface/interface parameters on the dispersion relation is studied numerically, and the results are compared with those obtained from the classical theory.
Literatur
1.
Zurück zum Zitat Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. Ultrasonics 69, 83–89 (2016)CrossRef Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. Ultrasonics 69, 83–89 (2016)CrossRef
2.
Zurück zum Zitat Jin, F., Qian, Z., Wang, Z., Kishimoto, K.: Propagation behavior of Love waves in a piezoelectric layered structure with inhomogeneous initial stress. Smart Mater. Struct. 14(4), 515 (2005)CrossRef Jin, F., Qian, Z., Wang, Z., Kishimoto, K.: Propagation behavior of Love waves in a piezoelectric layered structure with inhomogeneous initial stress. Smart Mater. Struct. 14(4), 515 (2005)CrossRef
3.
Zurück zum Zitat Liu, H., Wang, Z.K., Wang, T.J.: Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 38(1), 37–51 (2001)CrossRef Liu, H., Wang, Z.K., Wang, T.J.: Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 38(1), 37–51 (2001)CrossRef
4.
Zurück zum Zitat Salah, I.B., Njeh, A., Ghozlen, M.H.B.: A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM). Ultrasonics 52(2), 306–314 (2012)CrossRef Salah, I.B., Njeh, A., Ghozlen, M.H.B.: A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM). Ultrasonics 52(2), 306–314 (2012)CrossRef
5.
Zurück zum Zitat Achenbach, J.: Wave Propagation in Elastic Solids, vol. 16. Elsevier, Amsterdam (2012)MATH Achenbach, J.: Wave Propagation in Elastic Solids, vol. 16. Elsevier, Amsterdam (2012)MATH
6.
Zurück zum Zitat Eringen, A.C., Suhubi, E.S.: Elastodynamics, vol. II. Academic, New York (1975)MATH Eringen, A.C., Suhubi, E.S.: Elastodynamics, vol. II. Academic, New York (1975)MATH
7.
Zurück zum Zitat Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)MathSciNetCrossRef Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)MathSciNetCrossRef
8.
Zurück zum Zitat Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)CrossRef Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)CrossRef
9.
Zurück zum Zitat Enzevaee, C., Shodja, H.M.: Crystallography and surface effects on the propagation of Love and Rayleigh surface waves in fcc semi-infinite solids. Int. J. Solids Struct. 138, 109–117 (2018)CrossRef Enzevaee, C., Shodja, H.M.: Crystallography and surface effects on the propagation of Love and Rayleigh surface waves in fcc semi-infinite solids. Int. J. Solids Struct. 138, 109–117 (2018)CrossRef
10.
Zurück zum Zitat Mi, C., Jun, S., Kouris, D.A., Kim, S.Y.: Atomistic calculations of interface elastic properties in noncoherent metallic bilayers. Phys. Rev. B 77(7), 075425 (2008)CrossRef Mi, C., Jun, S., Kouris, D.A., Kim, S.Y.: Atomistic calculations of interface elastic properties in noncoherent metallic bilayers. Phys. Rev. B 77(7), 075425 (2008)CrossRef
11.
Zurück zum Zitat Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139 (2000)CrossRef Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139 (2000)CrossRef
12.
Zurück zum Zitat Pahlevani, L., Shodja, H.M.: Surface and interface effects on torsion of eccentrically two-phase fcc circular nanorods: determination of the surface/interface elastic properties via an atomistic approach. J. Appl. Mech. 78(1), 011011 (2011)CrossRef Pahlevani, L., Shodja, H.M.: Surface and interface effects on torsion of eccentrically two-phase fcc circular nanorods: determination of the surface/interface elastic properties via an atomistic approach. J. Appl. Mech. 78(1), 011011 (2011)CrossRef
13.
Zurück zum Zitat Shodja, H.M., Enzevaee, C.: Surface characterization of face-centered cubic crystals. Mech. Mater. 129, 15–22 (2019)CrossRef Shodja, H.M., Enzevaee, C.: Surface characterization of face-centered cubic crystals. Mech. Mater. 129, 15–22 (2019)CrossRef
14.
Zurück zum Zitat Chen, Q., Wang, G., Pindera, M.J.: Homogenization and localization of nanoporous composites—a critical review and new developments. Compos. Part B Eng. 155, 329–368 (2018)CrossRef Chen, Q., Wang, G., Pindera, M.J.: Homogenization and localization of nanoporous composites—a critical review and new developments. Compos. Part B Eng. 155, 329–368 (2018)CrossRef
15.
Zurück zum Zitat Enzevaee, C., Gutkin, M.Y., Shodja, H.M.: Surface/interface effects on the formation of misfit dislocation in a core-shell nanowire. Philos. Mag. 94(5), 492–519 (2014)CrossRef Enzevaee, C., Gutkin, M.Y., Shodja, H.M.: Surface/interface effects on the formation of misfit dislocation in a core-shell nanowire. Philos. Mag. 94(5), 492–519 (2014)CrossRef
16.
Zurück zum Zitat Fang, Q.H., Liu, Y.W.: Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater. 54(16), 4213–4220 (2006)CrossRef Fang, Q.H., Liu, Y.W.: Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater. 54(16), 4213–4220 (2006)CrossRef
17.
Zurück zum Zitat Gutkin, M.Y., Enzevaee, C., Shodja, H.M.: Interface effects on elastic behavior of an edge dislocation in a core–shell nanowire embedded to an infinite matrix. Int. J. Solids Struct. 50(7–8), 1177–1186 (2013)CrossRef Gutkin, M.Y., Enzevaee, C., Shodja, H.M.: Interface effects on elastic behavior of an edge dislocation in a core–shell nanowire embedded to an infinite matrix. Int. J. Solids Struct. 50(7–8), 1177–1186 (2013)CrossRef
18.
Zurück zum Zitat Shodja, H.M., Enzevaee, C., Gutkin, M.Y.: Interface effect on the formation of a dipole of screw misfit dislocations in an embedded nanowire with uniform shear eigenstrain field. Eur. J. Mech. A/Solids 51, 154–159 (2015)MathSciNetCrossRef Shodja, H.M., Enzevaee, C., Gutkin, M.Y.: Interface effect on the formation of a dipole of screw misfit dislocations in an embedded nanowire with uniform shear eigenstrain field. Eur. J. Mech. A/Solids 51, 154–159 (2015)MathSciNetCrossRef
19.
Zurück zum Zitat Wang, G., Chen, Q., He, Z., Pindera, M.J.: Homogenized moduli and local stress fields of unidirectional nano-composites. Compos. Part B Eng. 138, 265–277 (2018)CrossRef Wang, G., Chen, Q., He, Z., Pindera, M.J.: Homogenized moduli and local stress fields of unidirectional nano-composites. Compos. Part B Eng. 138, 265–277 (2018)CrossRef
20.
Zurück zum Zitat Wolfer, W.G.: Elastic properties of surfaces on nanoparticles. Acta Mater. 59(20), 7736–7743 (2011)CrossRef Wolfer, W.G.: Elastic properties of surfaces on nanoparticles. Acta Mater. 59(20), 7736–7743 (2011)CrossRef
21.
Zurück zum Zitat Ru, Y., Wang, G.F., Wang, T.J.: Diffractions of elastic waves and stress concentration near a cylindrical nano-inclusion incorporating surface effect. J. Vib. Acoust. 131(6), 061011 (2009)CrossRef Ru, Y., Wang, G.F., Wang, T.J.: Diffractions of elastic waves and stress concentration near a cylindrical nano-inclusion incorporating surface effect. J. Vib. Acoust. 131(6), 061011 (2009)CrossRef
22.
Zurück zum Zitat Shodja, H.M., Ghafarollahi, A., Enzevaee, C.: Surface/interface effect on the scattering of love waves by a nano-size surface-breaking crack within an ultra-thin layer bonded to an elastic half-space. Int. J. Solids Struct. 108, 63–73 (2017)CrossRef Shodja, H.M., Ghafarollahi, A., Enzevaee, C.: Surface/interface effect on the scattering of love waves by a nano-size surface-breaking crack within an ultra-thin layer bonded to an elastic half-space. Int. J. Solids Struct. 108, 63–73 (2017)CrossRef
23.
Zurück zum Zitat Dey, S., Gupta, A.K., Gupta, S.: Propagation of torsional surface waves in a homogeneous substratum over a heterogeneous half-space. Int. J. Numer. Anal. Methods Geomech. 20(4), 287–294 (1996)CrossRef Dey, S., Gupta, A.K., Gupta, S.: Propagation of torsional surface waves in a homogeneous substratum over a heterogeneous half-space. Int. J. Numer. Anal. Methods Geomech. 20(4), 287–294 (1996)CrossRef
24.
Zurück zum Zitat Heywang, W., Lubitz, K., Wersing, W. (eds.): Piezoelectricity: Evolution and Future of a Technology, vol. 114. Springer, Berlin (2008) Heywang, W., Lubitz, K., Wersing, W. (eds.): Piezoelectricity: Evolution and Future of a Technology, vol. 114. Springer, Berlin (2008)
Metadaten
Titel
Torsional surface wave propagation in a transversely isotropic FG substrate with piezoelectric over-layer within surface/interface theory
verfasst von
C. Enzevaee
H. M. Shodja
Publikationsdatum
09.03.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 6/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02638-2

Weitere Artikel der Ausgabe 6/2020

Acta Mechanica 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.