Skip to main content

2020 | OriginalPaper | Buchkapitel

Trends and Challenges for Electrowinning of Aluminium and Magnesium from Molten Salt Electrolytes

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern aluminium producing cells are operating at ~955–965 °C. The current efficiency with respect to aluminium can be as high as 96% and the corresponding energy consumption may be ~13 kWh/kg Al and higher in cells running at ~300 kA or higher. The current density is ~0.9 A/cm2. Developing inert anodes for oxygen evolution and measures to eliminate PFC emissions are important research topics. The role of impurities is also an important issue. Today, magnesium is mainly produced by the Pidgeon process, which involves the reduction of MgO by silicon in the form of ferrosilicon. The thermal process is presently more economic but electrowinning in molten chlorides with MgCl2 feedstock may be more sustainable and may make a comeback. However, electrolysis is still important for producing magnesium in the Kroll process for titanium production. The presence of moisture will affect the collection of produced Mg droplets and the consumption of graphite anodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten Å (2001) Aluminium electrolysis: fundamentals of the Hall-Heroult process. Aluminium-Verlag, Düsseldorf Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten Å (2001) Aluminium electrolysis: fundamentals of the Hall-Heroult process. Aluminium-Verlag, Düsseldorf
3.
Zurück zum Zitat Solheim A, Sterten Å (1997) Activity data for the system NaF-AlF3. In: Proceedings of the ninth international symposium on light metals production, Trondheim, Norway, p 225 Solheim A, Sterten Å (1997) Activity data for the system NaF-AlF3. In: Proceedings of the ninth international symposium on light metals production, Trondheim, Norway, p 225
4.
Zurück zum Zitat Skybakmoen E, Solheim A, Sterten Å (1997) Alumina solubility in molten salt systems of interest for aluminum electrolysis and related phase diagram data. Metall Mater Trans B 28B:81–86CrossRef Skybakmoen E, Solheim A, Sterten Å (1997) Alumina solubility in molten salt systems of interest for aluminum electrolysis and related phase diagram data. Metall Mater Trans B 28B:81–86CrossRef
5.
Zurück zum Zitat Sterten Å (1980) Structural entities in NaF-AlF3 melts containing alumina. Electrochim Acta 25:1673CrossRef Sterten Å (1980) Structural entities in NaF-AlF3 melts containing alumina. Electrochim Acta 25:1673CrossRef
6.
Zurück zum Zitat Thonstad J, Rolseth S (1978) On the cathodic overvoltage on aluminium in cryolite-alumina melts—I. Electrochim Acta 23:223–241CrossRef Thonstad J, Rolseth S (1978) On the cathodic overvoltage on aluminium in cryolite-alumina melts—I. Electrochim Acta 23:223–241CrossRef
7.
Zurück zum Zitat Jarek S, Thonstad J (1987) Light metals 1987, pp 399–407 Jarek S, Thonstad J (1987) Light metals 1987, pp 399–407
8.
Zurück zum Zitat Thonstad J (1964) On the anode gas reactions in aluminum electrolysis, II. J Electrochem Soc 111:959CrossRef Thonstad J (1964) On the anode gas reactions in aluminum electrolysis, II. J Electrochem Soc 111:959CrossRef
9.
Zurück zum Zitat Bredig MA (1964) Mixtures of metals with molten salts. In: Blander M (ed) Molten salt chemistry. Interscience, New York Bredig MA (1964) Mixtures of metals with molten salts. In: Blander M (ed) Molten salt chemistry. Interscience, New York
10.
Zurück zum Zitat Ødegård R, Sterten Å, Thonstad J (1987) Light metals 1987, p 389 Ødegård R, Sterten Å, Thonstad J (1987) Light metals 1987, p 389
11.
Zurück zum Zitat Wang X, Peterson RD, Richards NE (1991) Light metals 1991, p 323 Wang X, Peterson RD, Richards NE (1991) Light metals 1991, p 323
12.
Zurück zum Zitat Rolseth S, Thonstad J (1981) On the mechanism of the reoxidation reaction in aluminum electrolysis. In: Light metals 1981, pp 289–301 Rolseth S, Thonstad J (1981) On the mechanism of the reoxidation reaction in aluminum electrolysis. In: Light metals 1981, pp 289–301
13.
Zurück zum Zitat Sterten Å (1988) Current efficiency in aluminium reduction cells. J Appl Electrochem 18:473CrossRef Sterten Å (1988) Current efficiency in aluminium reduction cells. J Appl Electrochem 18:473CrossRef
14.
Zurück zum Zitat Sterten Å, Solli PA, Skybakmoen E (1998) Influence of electrolyte impurities on current efficiency in aluminium electrolysis cells. J Appl Electrochem 28:781 Sterten Å, Solli PA, Skybakmoen E (1998) Influence of electrolyte impurities on current efficiency in aluminium electrolysis cells. J Appl Electrochem 28:781
15.
Zurück zum Zitat Sterten Å, Solli PA (1995) Cathodic process and cyclic redox reactions in aluminium electrolysis cells. J Appl Electrochem 25:809 Sterten Å, Solli PA (1995) Cathodic process and cyclic redox reactions in aluminium electrolysis cells. J Appl Electrochem 25:809
16.
Zurück zum Zitat Haarberg GM, Armoo JP, Gudbrandsen H, Skybakmoen E, Solheim A, Jentoftsen TE (2011) Current efficiency for aluminium deposition from molten cryolite-alumina electrolytes in a laboratory cell. In: Light metals 2011, pp 461–463 Haarberg GM, Armoo JP, Gudbrandsen H, Skybakmoen E, Solheim A, Jentoftsen TE (2011) Current efficiency for aluminium deposition from molten cryolite-alumina electrolytes in a laboratory cell. In: Light metals 2011, pp 461–463
18.
Zurück zum Zitat Johansen HG, Thonstad J, Sterten Å (1977) Light metals 1977, pp 253–261 Johansen HG, Thonstad J, Sterten Å (1977) Light metals 1977, pp 253–261
19.
Zurück zum Zitat Deininger L, Gerlach J (1979) Measurements of the current efficiency in aluminium oxide electrolytic reduction on the laboratory scale. J Metall 33:131 Deininger L, Gerlach J (1979) Measurements of the current efficiency in aluminium oxide electrolytic reduction on the laboratory scale. J Metall 33:131
20.
Zurück zum Zitat Sterten Å, Solli PA, Skybakmoen E (1998) Influence of electrolyte impurities on current efficiency in aluminium electrolysis cells. J Appl Electrochem 28:781CrossRef Sterten Å, Solli PA, Skybakmoen E (1998) Influence of electrolyte impurities on current efficiency in aluminium electrolysis cells. J Appl Electrochem 28:781CrossRef
21.
Zurück zum Zitat Haugland E, Haarberg GM, Thisted E, Thonstad J (2001) The behaviour of phosphorus impurities in aluminium electrolysis cells. In: Light metals 2001, p 549 Haugland E, Haarberg GM, Thisted E, Thonstad J (2001) The behaviour of phosphorus impurities in aluminium electrolysis cells. In: Light metals 2001, p 549
22.
Zurück zum Zitat Haarberg GM (2017) Electrochemical behaviour of dissolved titanium oxides during aluminium deposition from molten fluoride electrolytes. Mater Trans 58(3):406–409CrossRef Haarberg GM (2017) Electrochemical behaviour of dissolved titanium oxides during aluminium deposition from molten fluoride electrolytes. Mater Trans 58(3):406–409CrossRef
23.
Zurück zum Zitat Haupin WE (1995) Principles of aluminum electrolysis. In: Light metals 1995, pp 195–203 Haupin WE (1995) Principles of aluminum electrolysis. In: Light metals 1995, pp 195–203
24.
Zurück zum Zitat Marks J, Byliss C (2012) GHG measurement and inventory for aluminum production. In: Light metals 2012, pp 803–808 Marks J, Byliss C (2012) GHG measurement and inventory for aluminum production. In: Light metals 2012, pp 803–808
25.
Zurück zum Zitat Åsheim H, Aarhaug TA, Sandnes E, Kjos OS, Solheim A, Kolås S, Haarberg GM (2016) Anode effect initiation during aluminium electrolysis in a two-compartment laboratory cell. In: Light metals 2016, pp 551–558 Åsheim H, Aarhaug TA, Sandnes E, Kjos OS, Solheim A, Kolås S, Haarberg GM (2016) Anode effect initiation during aluminium electrolysis in a two-compartment laboratory cell. In: Light metals 2016, pp 551–558
26.
Zurück zum Zitat Strelets KhL (1977) Electrolytic production of magnesium. Keterpress Enterprises, Jerusalem, Israel Strelets KhL (1977) Electrolytic production of magnesium. Keterpress Enterprises, Jerusalem, Israel
27.
Zurück zum Zitat Kipouros GJ, Sadoway DR (1987) Advances in molten salt chemistry, vol 6, Mamantov G (ed). Elsevier, Amsterdam Kipouros GJ, Sadoway DR (1987) Advances in molten salt chemistry, vol 6, Mamantov G (ed). Elsevier, Amsterdam
28.
Zurück zum Zitat Høy-Petersen N (1990) From past to future. In: Light metal age, vol 48, pp 14–16 Høy-Petersen N (1990) From past to future. In: Light metal age, vol 48, pp 14–16
29.
Zurück zum Zitat Haarberg GM, Tunold R, Osen KS (2001) Voltammetric characterization of dissolved oxygen and hydrogen containing species in chloride melts. In: Rosenkilde C (ed) Jondal 2000, Proceedings, International symposium, vol 147 Haarberg GM, Tunold R, Osen KS (2001) Voltammetric characterization of dissolved oxygen and hydrogen containing species in chloride melts. In: Rosenkilde C (ed) Jondal 2000, Proceedings, International symposium, vol 147
30.
Zurück zum Zitat Boghosian S, Godø A, Mediaas H, Ravlo W, Østvold T (1991) Oxide complexes in alkali-alkaline-earth chloride melts. Acta Chem Scand 45:145 Boghosian S, Godø A, Mediaas H, Ravlo W, Østvold T (1991) Oxide complexes in alkali-alkaline-earth chloride melts. Acta Chem Scand 45:145
31.
Zurück zum Zitat Vilnyanski YE, Savinkova EI (1957) J Appl Chem USSR 28:827 Vilnyanski YE, Savinkova EI (1957) J Appl Chem USSR 28:827
32.
Zurück zum Zitat van Norman JD, Egan JJ (1963) Magnesium-magnesium chloride system-a chronopotentiometric study. J Phys Chem 67:2460CrossRef van Norman JD, Egan JJ (1963) Magnesium-magnesium chloride system-a chronopotentiometric study. J Phys Chem 67:2460CrossRef
33.
Zurück zum Zitat Martinez AM, Børresen B, Haarberg GM, Castrillejo Y, Tunold R (2004) Electrodeposition of magnesium from CaCl2-NaCl-KCl-MgCl2 Melts. J Electrochem Soc 151:C508–C513CrossRef Martinez AM, Børresen B, Haarberg GM, Castrillejo Y, Tunold R (2004) Electrodeposition of magnesium from CaCl2-NaCl-KCl-MgCl2 Melts. J Electrochem Soc 151:C508–C513CrossRef
34.
Zurück zum Zitat Mohamedi M, Børresen B, Haarberg GM, Tunold R (1999) Anodic behaviour of carbon electrodes in CaO-CaCl2 melts at 1123 K. J Electrochem Soc 146:1472CrossRef Mohamedi M, Børresen B, Haarberg GM, Tunold R (1999) Anodic behaviour of carbon electrodes in CaO-CaCl2 melts at 1123 K. J Electrochem Soc 146:1472CrossRef
35.
Zurück zum Zitat Wallevik O, Amundsen K, Faucher A, Mellerud T (2000) Magnesium electrolysis—a monopolar viewpoint. In: Kaplan HI, Hryn J, Clow B (eds) Magnesium technology 2000. The Minerals, Metals & Materials Society, Warrendale, pp 13–16 Wallevik O, Amundsen K, Faucher A, Mellerud T (2000) Magnesium electrolysis—a monopolar viewpoint. In: Kaplan HI, Hryn J, Clow B (eds) Magnesium technology 2000. The Minerals, Metals & Materials Society, Warrendale, pp 13–16
36.
Zurück zum Zitat Ishizuka H (1985) Method for electrolytically obtaining magnesium metal. US patent 4,495,037 Ishizuka H (1985) Method for electrolytically obtaining magnesium metal. US patent 4,495,037
37.
Zurück zum Zitat Sivilotti OG (1985) Metal production by electrolysis of a molten electrolyte. US patent 4,514,269 Sivilotti OG (1985) Metal production by electrolysis of a molten electrolyte. US patent 4,514,269
Metadaten
Titel
Trends and Challenges for Electrowinning of Aluminium and Magnesium from Molten Salt Electrolytes
verfasst von
Geir Martin Haarberg
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-36296-6_176

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.