Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 9/2023

04.03.2023 | Research Article-Mechanical Engineering

Ultra-Low-Frequency Broadband Sound Absorption Characteristics of an Acoustic Metasurface with Pie-Sliced Unit Cells

verfasst von: K. Mahesh, P. P. Anoop, P. Damodaran, S. Kumar Ranjith, R. S. Mini

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, an acoustic metasurface composed of pie-sliced resonator segments is proposed and its attenuation characteristics in ultra-low-frequency regime are examined using analytical, numerical, and experimental means. This metasurface absorber is systematically designed and realized with inhomogeneous unit cells in the shape of sliced pie to accomplish ultra-low-frequency (<100 Hz) noise cancellation. Firstly, a sound absorber with four unit cells having deep sub-wavelength thickness (\(\lambda \)/39) is fabricated and it exhibited a sound wave mitigation of more than 80% throughout the low-frequency range of 212–276 Hz. For enhancing the broadband absorption in the ultra-low-frequency regime, an acoustic absorber with eight pie-sliced unit cells is designed, realized and tested. Thereafter, a compact absorber with very-low vertical (\(\lambda /34\)) and lateral (\(\lambda /52\)) dimensions is considered and it accomplished more than 85% sound absorption in the ultra-low-frequency domain of 66–100 Hz. It is further demonstrated that, by tailoring the geometrical features such as cavity depth, resonator diameter, neck length, sector angle and number of unit cells of the metastructure, the bandwidth and frequency of the absorption peak can be modified as per the requirement. Owing to the compactness, ease of production and high absorption capacity over a wide band in the ultra-low-frequency regime, the introduced acoustic metasurface is a potential candidate for noise control applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tyagi, V.; Kumar, K.; Jain, V.K.: A study of the spectral characteristics of traffic noise attenuation by vegetation belts in Delhi. Appl. Acoust. 67(9), 926–935 (2006) Tyagi, V.; Kumar, K.; Jain, V.K.: A study of the spectral characteristics of traffic noise attenuation by vegetation belts in Delhi. Appl. Acoust. 67(9), 926–935 (2006)
2.
Zurück zum Zitat Ekici, I.; Bougdah, H.: A review of research on environmental noise barriers. Build. Acoust. 10(4), 289–323 (2003) Ekici, I.; Bougdah, H.: A review of research on environmental noise barriers. Build. Acoust. 10(4), 289–323 (2003)
3.
Zurück zum Zitat Tang, X.; Yan, X.: Acoustic energy absorption properties of fibrous materials: a review. Compos. Part A: Appl. Sci. Manuf. 101, 360–380 (2017) Tang, X.; Yan, X.: Acoustic energy absorption properties of fibrous materials: a review. Compos. Part A: Appl. Sci. Manuf. 101, 360–380 (2017)
4.
Zurück zum Zitat Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J.: Porous materials for sound absorption. Compos. Commun. 10, 25–35 (2018) Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J.: Porous materials for sound absorption. Compos. Commun. 10, 25–35 (2018)
5.
Zurück zum Zitat Ingard, U.: On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 25(6), 1037–61 (1953) Ingard, U.: On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 25(6), 1037–61 (1953)
6.
Zurück zum Zitat Prydz, R.; Wirt, L.; Kuntz, H.; Pope, L.: Transmission loss of a multilayer panel with internal tuned Helmholtz resonators. J. Acoust. Soc. Am. 87(4), 1597–1602 (1990) Prydz, R.; Wirt, L.; Kuntz, H.; Pope, L.: Transmission loss of a multilayer panel with internal tuned Helmholtz resonators. J. Acoust. Soc. Am. 87(4), 1597–1602 (1990)
7.
Zurück zum Zitat Kim, S.; Kim, Y.H.; Jang, J.H.: A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array. J. Acoust. Soc. Am. 119(4), 1933–1936 (2006) Kim, S.; Kim, Y.H.; Jang, J.H.: A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array. J. Acoust. Soc. Am. 119(4), 1933–1936 (2006)
8.
Zurück zum Zitat Mahesh, K.; Mini, R.S.: Investigation on the acoustic performance of multiple Helmholtz resonator configurations. Acoust. Aust. 49(2), 355–369 (2021) Mahesh, K.; Mini, R.S.: Investigation on the acoustic performance of multiple Helmholtz resonator configurations. Acoust. Aust. 49(2), 355–369 (2021)
9.
Zurück zum Zitat Huang, S.; Fang, X.; Wang, X.; Assouar, B.; Cheng, Q.; Li, Y.: Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. J. Acoust. Soc. Am. 145(1), 254–262 (2019) Huang, S.; Fang, X.; Wang, X.; Assouar, B.; Cheng, Q.; Li, Y.: Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. J. Acoust. Soc. Am. 145(1), 254–262 (2019)
10.
Zurück zum Zitat Zhu, J.; Qu, Y.; Gao, H.; Meng, G.: Nonlinear sound absorption of Helmholtz resonators with serrated necks under high-amplitude sound wave excitation. J. Sound Vib. 537, 117197 (2022) Zhu, J.; Qu, Y.; Gao, H.; Meng, G.: Nonlinear sound absorption of Helmholtz resonators with serrated necks under high-amplitude sound wave excitation. J. Sound Vib. 537, 117197 (2022)
11.
Zurück zum Zitat Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P.: Acoustic metasurface with hybrid resonances. Nat. Mater. 13(9), 873–878 (2014) Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P.: Acoustic metasurface with hybrid resonances. Nat. Mater. 13(9), 873–878 (2014)
12.
Zurück zum Zitat Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P.: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3(1), 1–7 (2012) Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P.: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3(1), 1–7 (2012)
13.
Zurück zum Zitat Sampaio, L.Y.; Cerântola, P.C.; de Oliveira, L.P.: Lightweight decorated membranes as an aesthetic solution for sound insulation panels. J. Sound Vib. 532, 116971 (2022) Sampaio, L.Y.; Cerântola, P.C.; de Oliveira, L.P.: Lightweight decorated membranes as an aesthetic solution for sound insulation panels. J. Sound Vib. 532, 116971 (2022)
14.
Zurück zum Zitat Maa, D.Y.: Microperforated-panel wideband absorbers. Noise Control Eng. J. 29(3), 77 (1987) Maa, D.Y.: Microperforated-panel wideband absorbers. Noise Control Eng. J. 29(3), 77 (1987)
15.
Zurück zum Zitat Maa, D.Y.: Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104(5), 2861–2866 (1998) Maa, D.Y.: Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104(5), 2861–2866 (1998)
16.
Zurück zum Zitat Rafique, F.; Wu, J.H.; Waqas, M.; Lushuai, X.; Ma, F.: A thin double-layer multiple parallel-arranged inhomogeneous microperforated panel absorber for wideband low-frequency sound absorption. J. Braz. Soc. Mech. Sci. Eng. 44(1), 1–18 (2022) Rafique, F.; Wu, J.H.; Waqas, M.; Lushuai, X.; Ma, F.: A thin double-layer multiple parallel-arranged inhomogeneous microperforated panel absorber for wideband low-frequency sound absorption. J. Braz. Soc. Mech. Sci. Eng. 44(1), 1–18 (2022)
17.
Zurück zum Zitat Tan, W.-H.; Ripin, Z.M.: Optimization of double-layered micro-perforated panels with vibro-acoustic effect. J. Braz. Soc. Mech. Sci. Eng. 38(3), 745–760 (2016) Tan, W.-H.; Ripin, Z.M.: Optimization of double-layered micro-perforated panels with vibro-acoustic effect. J. Braz. Soc. Mech. Sci. Eng. 38(3), 745–760 (2016)
18.
Zurück zum Zitat Li, X.; Wu, Q.; Kang, L.; Liu, B.: Design of multiple parallel-arranged perforated panel absorbers for low frequency sound absorption. Materials 12(13), 2099 (2019) Li, X.; Wu, Q.; Kang, L.; Liu, B.: Design of multiple parallel-arranged perforated panel absorbers for low frequency sound absorption. Materials 12(13), 2099 (2019)
19.
Zurück zum Zitat Mi, Y.; Yu, X.: Attenuation of low-frequency sound in u-shaped duct with membrane coupled acoustic resonator: modeling and analysis. J. Sound Vib. 489, 115679 (2020) Mi, Y.; Yu, X.: Attenuation of low-frequency sound in u-shaped duct with membrane coupled acoustic resonator: modeling and analysis. J. Sound Vib. 489, 115679 (2020)
20.
Zurück zum Zitat Sakagami, K.; Nagayama, Y.; Morimoto, M.; Yairi, M.: Pilot study on wideband sound absorber obtained by combination of two different microperforated panel (MPP) absorbers. Acoust. Sci. Technol. 30(2), 154–156 (2009) Sakagami, K.; Nagayama, Y.; Morimoto, M.; Yairi, M.: Pilot study on wideband sound absorber obtained by combination of two different microperforated panel (MPP) absorbers. Acoust. Sci. Technol. 30(2), 154–156 (2009)
21.
Zurück zum Zitat Wang, C.; Cheng, L.; Pan, J.; Yu, G.: Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity. J. Acoust. Soc. Am. 127(1), 238–246 (2010) Wang, C.; Cheng, L.; Pan, J.; Yu, G.: Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity. J. Acoust. Soc. Am. 127(1), 238–246 (2010)
22.
Zurück zum Zitat Li, D.; Chang, D.; Liu, B.: Enhanced low-to mid-frequency sound absorption using parallel-arranged perforated plates with extended tubes and porous material. Appl. Acoust. 127, 316–323 (2017) Li, D.; Chang, D.; Liu, B.: Enhanced low-to mid-frequency sound absorption using parallel-arranged perforated plates with extended tubes and porous material. Appl. Acoust. 127, 316–323 (2017)
23.
Zurück zum Zitat Shen, X.; Bai, P.; Yang, X.; Zhang, X.; To, S.: Low frequency sound absorption by optimal combination structure of porous metal and microperforated panel. Appl. Sci. 9(7), 1507 (2019) Shen, X.; Bai, P.; Yang, X.; Zhang, X.; To, S.: Low frequency sound absorption by optimal combination structure of porous metal and microperforated panel. Appl. Sci. 9(7), 1507 (2019)
24.
Zurück zum Zitat Boulvert, J.; Humbert, T.; Romero-García, V.; Gabard, G.; Fotsing, E.R.; Ross, A.; Mardjono, J.; Groby, J.-P.: Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: realization for duct acoustics with 3d printed porous resonators. J. Sound Vib. 523, 116687 (2022) Boulvert, J.; Humbert, T.; Romero-García, V.; Gabard, G.; Fotsing, E.R.; Ross, A.; Mardjono, J.; Groby, J.-P.: Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: realization for duct acoustics with 3d printed porous resonators. J. Sound Vib. 523, 116687 (2022)
25.
Zurück zum Zitat Guo, J.; Fang, Y.; Jiang, Z.; Zhang, X.: Acoustic characterizations of Helmholtz resonators with extended necks and their checkerboard combination for sound absorption. J. Phys. D: Appl. Phys. 53(50), 505504 (2020) Guo, J.; Fang, Y.; Jiang, Z.; Zhang, X.: Acoustic characterizations of Helmholtz resonators with extended necks and their checkerboard combination for sound absorption. J. Phys. D: Appl. Phys. 53(50), 505504 (2020)
26.
Zurück zum Zitat Gai, X.L.; Xing, T.; Li, X.H.; Zhang, B.; Wang, W.J.: Sound absorption of microperforated panel mounted with Helmholtz resonators. Appl. Acoust. 114, 260–265 (2016) Gai, X.L.; Xing, T.; Li, X.H.; Zhang, B.; Wang, W.J.: Sound absorption of microperforated panel mounted with Helmholtz resonators. Appl. Acoust. 114, 260–265 (2016)
27.
Zurück zum Zitat Park, S.H.: Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption. J. Sound Vib. 332(20), 4895–4911 (2013) Park, S.H.: Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption. J. Sound Vib. 332(20), 4895–4911 (2013)
28.
Zurück zum Zitat Langfeldt, F.; Hoppen, H.; Gleine, W.: Broadband low-frequency sound transmission loss improvement of double walls with Helmholtz resonators. J. Sound Vib. 476, 115309 (2020) Langfeldt, F.; Hoppen, H.; Gleine, W.: Broadband low-frequency sound transmission loss improvement of double walls with Helmholtz resonators. J. Sound Vib. 476, 115309 (2020)
29.
Zurück zum Zitat Guo, J.; Zhang, X.; Fang, Y.; Jiang, Z.: Wideband low-frequency sound absorption by inhomogeneous multi-layer resonators with extended necks. Compos. Struct. 260, 113538 (2021) Guo, J.; Zhang, X.; Fang, Y.; Jiang, Z.: Wideband low-frequency sound absorption by inhomogeneous multi-layer resonators with extended necks. Compos. Struct. 260, 113538 (2021)
30.
Zurück zum Zitat Liu, X.; Yu, C.; Xin, F.: Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption. Compos. Struct. 263, 113647 (2021) Liu, X.; Yu, C.; Xin, F.: Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption. Compos. Struct. 263, 113647 (2021)
31.
Zurück zum Zitat Mahesh, K.; Mini, R.S.: Theoretical investigation on the acoustic performance of Helmholtz resonator integrated microperforated panel absorber. Appl. Acoust. 178, 108012 (2021) Mahesh, K.; Mini, R.S.: Theoretical investigation on the acoustic performance of Helmholtz resonator integrated microperforated panel absorber. Appl. Acoust. 178, 108012 (2021)
32.
Zurück zum Zitat Mahesh, K.; Ranjith, S.K.; Mini, R.S.: Inverse design of a Helmholtz resonator based low-frequency acoustic absorber using deep neural network. J. Appl. Phys. 129(17), 174901 (2021) Mahesh, K.; Ranjith, S.K.; Mini, R.S.: Inverse design of a Helmholtz resonator based low-frequency acoustic absorber using deep neural network. J. Appl. Phys. 129(17), 174901 (2021)
33.
Zurück zum Zitat Assouar, B.; Liang, B.; Wu, Y.; Li, Y.; Cheng, J.C.; Jing, Y.: Acoustic metasurfaces. Nat. Rev. Mater. 3(12), 460–472 (2018) Assouar, B.; Liang, B.; Wu, Y.; Li, Y.; Cheng, J.C.; Jing, Y.: Acoustic metasurfaces. Nat. Rev. Mater. 3(12), 460–472 (2018)
34.
Zurück zum Zitat Liu, H.; Wu, J.H.; Ma, F.: High-efficiency sound absorption by a nested and ventilated metasurface based on multi-slit synergetic resonance. J. Phys. D: Appl. Phys. 54(20), 205304 (2021) Liu, H.; Wu, J.H.; Ma, F.: High-efficiency sound absorption by a nested and ventilated metasurface based on multi-slit synergetic resonance. J. Phys. D: Appl. Phys. 54(20), 205304 (2021)
35.
Zurück zum Zitat Liu, H.; Wu, J.H.; Ma, F.: Dynamic tunable acoustic metasurface with continuously perfect sound absorption. J. Phys. D: Appl. Phys. 54(36), 365105 (2021) Liu, H.; Wu, J.H.; Ma, F.: Dynamic tunable acoustic metasurface with continuously perfect sound absorption. J. Phys. D: Appl. Phys. 54(36), 365105 (2021)
36.
Zurück zum Zitat Liu, L.; Chang, H.; Zhang, C.; Hu, X.: Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth. Appl. Phys. Lett. 111(8), 083503 (2017) Liu, L.; Chang, H.; Zhang, C.; Hu, X.: Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth. Appl. Phys. Lett. 111(8), 083503 (2017)
37.
Zurück zum Zitat Xu, Z.; Qin, L.; Xu, W.; Fang, S.; Wang, J.: Design approach of perforated labyrinth-based acoustic metasurface for selective acoustic levitation manipulation. Sci. Rep. 11(1), 1–11 (2021) Xu, Z.; Qin, L.; Xu, W.; Fang, S.; Wang, J.: Design approach of perforated labyrinth-based acoustic metasurface for selective acoustic levitation manipulation. Sci. Rep. 11(1), 1–11 (2021)
38.
Zurück zum Zitat Li, M.; Wu, J.H.; Yuan, X.Y.: Metasurface zero-impedance matching mechanism for aerodynamic noise reduction. J. Sound Vib. 536, 117147 (2022) Li, M.; Wu, J.H.; Yuan, X.Y.: Metasurface zero-impedance matching mechanism for aerodynamic noise reduction. J. Sound Vib. 536, 117147 (2022)
39.
Zurück zum Zitat Zhu, Y.; Assouar, B.: Multifunctional acoustic metasurface based on an array of Helmholtz resonators. Phys. Rev. B 99(17), 174109 (2019) Zhu, Y.; Assouar, B.: Multifunctional acoustic metasurface based on an array of Helmholtz resonators. Phys. Rev. B 99(17), 174109 (2019)
40.
Zurück zum Zitat Gong, K.; Wang, X.; Ouyang, H.; Mo, J.: Tuneable gradient Helmholtz-resonator-based acoustic metasurface for acoustic focusing. J. Phys. D: Appl. Phys. 52(38), 385303 (2019) Gong, K.; Wang, X.; Ouyang, H.; Mo, J.: Tuneable gradient Helmholtz-resonator-based acoustic metasurface for acoustic focusing. J. Phys. D: Appl. Phys. 52(38), 385303 (2019)
41.
Zurück zum Zitat Mahesh, K.; Ranjith, S.K.; Mini, R.S.: Inverse design of a Helmholtz resonator-based acoustic metasurface for low-frequency sound absorption using deep neural network. In: Euronoise 2021, pp. 1369–1377 (2021) Mahesh, K.; Ranjith, S.K.; Mini, R.S.: Inverse design of a Helmholtz resonator-based acoustic metasurface for low-frequency sound absorption using deep neural network. In: Euronoise 2021, pp. 1369–1377 (2021)
42.
Zurück zum Zitat Liu, C.R.; Wu, J.H.; Yang, Z.; Ma, F.: Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance. Compos. Struct. 246, 112366 (2020) Liu, C.R.; Wu, J.H.; Yang, Z.; Ma, F.: Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance. Compos. Struct. 246, 112366 (2020)
43.
Zurück zum Zitat Yang, M.; Chen, S.; Fu, C.; Sheng, P.: Optimal sound-absorbing structures. Mater. Horiz. 4(4), 673–680 (2017) Yang, M.; Chen, S.; Fu, C.; Sheng, P.: Optimal sound-absorbing structures. Mater. Horiz. 4(4), 673–680 (2017)
44.
Zurück zum Zitat Li, Y.; Assouar, B.M.: Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108(6), 063502 (2016) Li, Y.; Assouar, B.M.: Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108(6), 063502 (2016)
45.
Zurück zum Zitat Han, Y.; Wang, X.; Xie, G.; Tang, X.; Chen, T.: Low-frequency sound-absorbing metasurface with a channel of nonuniform cross section. J. Appl. Phys. 127(6), 064902 (2020) Han, Y.; Wang, X.; Xie, G.; Tang, X.; Chen, T.: Low-frequency sound-absorbing metasurface with a channel of nonuniform cross section. J. Appl. Phys. 127(6), 064902 (2020)
46.
Zurück zum Zitat Guo, J.; Zhang, X.; Fang, Y.; Jiang, Z.: A compact low-frequency sound-absorbing metasurface constructed by resonator with embedded spiral neck. Appl. Phys. Lett. 117(22), 221902 (2020) Guo, J.; Zhang, X.; Fang, Y.; Jiang, Z.: A compact low-frequency sound-absorbing metasurface constructed by resonator with embedded spiral neck. Appl. Phys. Lett. 117(22), 221902 (2020)
47.
Zurück zum Zitat Liu, Y.; Ren, S.; Sun, W.; Lei, Y.; Wang, H.; Zeng, X.: Broadband low-frequency sound absorbing metastructures based on impedance matching coiled-up cavity. Appl. Phys. Lett. 119(10), 101901 (2021) Liu, Y.; Ren, S.; Sun, W.; Lei, Y.; Wang, H.; Zeng, X.: Broadband low-frequency sound absorbing metastructures based on impedance matching coiled-up cavity. Appl. Phys. Lett. 119(10), 101901 (2021)
48.
Zurück zum Zitat Ji, J.; Li, D.; Li, Y.; Jing, Y.: Low-frequency broadband acoustic metasurface absorbing panels. Front. Mech. Eng. 6, 94 (2020) Ji, J.; Li, D.; Li, Y.; Jing, Y.: Low-frequency broadband acoustic metasurface absorbing panels. Front. Mech. Eng. 6, 94 (2020)
49.
Zurück zum Zitat Donda, K.; Zhu, Y.; Fan, S.-W.; Cao, L.; Li, Y.; Assouar, B.: Extreme low-frequency ultrathin acoustic absorbing metasurface. Appl. Phys. Lett. 115(17), 173506 (2019) Donda, K.; Zhu, Y.; Fan, S.-W.; Cao, L.; Li, Y.; Assouar, B.: Extreme low-frequency ultrathin acoustic absorbing metasurface. Appl. Phys. Lett. 115(17), 173506 (2019)
50.
Zurück zum Zitat Zhang, X.; Qu, Z.; Wang, H.: Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures. Iscience 23(5), 101110 (2020) Zhang, X.; Qu, Z.; Wang, H.: Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures. Iscience 23(5), 101110 (2020)
51.
Zurück zum Zitat Stinson, M.R.: The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acousti. Soc. Am. 89(2), 550–558 (1991) Stinson, M.R.: The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acousti. Soc. Am. 89(2), 550–558 (1991)
52.
Zurück zum Zitat Huang, S.; Zhou, E.; Huang, Z.; Lei, P.; Zhou, Z.; Li, Y.: Broadband sound attenuation by metaliner under grazing flow. Appl. Phys. Lett. 118(6), 063504 (2021) Huang, S.; Zhou, E.; Huang, Z.; Lei, P.; Zhou, Z.; Li, Y.: Broadband sound attenuation by metaliner under grazing flow. Appl. Phys. Lett. 118(6), 063504 (2021)
53.
Zurück zum Zitat Duan, M.; Yu, C.; Xu, Z.; Xin, F.; Lu, T.J.: Acoustic impedance regulation of Helmholtz resonators for perfect sound absorption via roughened embedded necks. Appl. Phys. Lett. 117(15), 151904 (2020) Duan, M.; Yu, C.; Xu, Z.; Xin, F.; Lu, T.J.: Acoustic impedance regulation of Helmholtz resonators for perfect sound absorption via roughened embedded necks. Appl. Phys. Lett. 117(15), 151904 (2020)
54.
Zurück zum Zitat Duan, M.; Yu, C.; He, W.; Xin, F.; Lu, T.J.: Perfect sound absorption of Helmholtz resonators with embedded channels in petal shape. J. Appl. Phys. 130(13), 135102 (2021) Duan, M.; Yu, C.; He, W.; Xin, F.; Lu, T.J.: Perfect sound absorption of Helmholtz resonators with embedded channels in petal shape. J. Appl. Phys. 130(13), 135102 (2021)
55.
Zurück zum Zitat Dong, H.-W.; Zhao, S.-D.; Oudich, M.; Shen, C.; Zhang, C.; Cheng, L.; Wang, Y.-S.; Fang, D.: Reflective metasurfaces with multiple elastic mode conversions for broadband underwater sound absorption. Phys. Rev. Appl. 17(4), 044013 (2022) Dong, H.-W.; Zhao, S.-D.; Oudich, M.; Shen, C.; Zhang, C.; Cheng, L.; Wang, Y.-S.; Fang, D.: Reflective metasurfaces with multiple elastic mode conversions for broadband underwater sound absorption. Phys. Rev. Appl. 17(4), 044013 (2022)
56.
Zurück zum Zitat ISO 10534-2:1998(E), Determination of sound absorption coefficient and impedance in impedance tubes (1998) ISO 10534-2:1998(E), Determination of sound absorption coefficient and impedance in impedance tubes (1998)
57.
Zurück zum Zitat ASTM E1050-12, Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system (2012) ASTM E1050-12, Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system (2012)
58.
Zurück zum Zitat Romero-García, V.; Theocharis, G.; Richoux, O.; Pagneux, V.: Use of complex frequency plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am. 139(6), 3395–3403 (2016) Romero-García, V.; Theocharis, G.; Richoux, O.; Pagneux, V.: Use of complex frequency plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am. 139(6), 3395–3403 (2016)
59.
Zurück zum Zitat Carbajo, J.; Ramis, J.; Godinho, L.; Amado-Mendes, P.; Alba, J.: A finite element model of perforated panel absorbers including viscothermal effects. Appl. Acoust. 90, 1–8 (2015) Carbajo, J.; Ramis, J.; Godinho, L.; Amado-Mendes, P.; Alba, J.: A finite element model of perforated panel absorbers including viscothermal effects. Appl. Acoust. 90, 1–8 (2015)
Metadaten
Titel
Ultra-Low-Frequency Broadband Sound Absorption Characteristics of an Acoustic Metasurface with Pie-Sliced Unit Cells
verfasst von
K. Mahesh
P. P. Anoop
P. Damodaran
S. Kumar Ranjith
R. S. Mini
Publikationsdatum
04.03.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 9/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-07734-8

Weitere Artikel der Ausgabe 9/2023

Arabian Journal for Science and Engineering 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.