Skip to main content
Erschienen in: Pattern Recognition and Image Analysis 4/2019

01.10.2019 | APPLIED PROBLEMS

Using the K-Nearest Neighbors Algorithm for Automated Detection of Myocardial Infarction by Electrocardiogram Data Entries

verfasst von: A. A. Savostin, D. V. Ritter, G. V. Savostina

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents a new approach to solving the problem of automated detection of myocardial infarction of various localization by electrocardiogram data entries. Only the second standard lead is used in the analysis. The signal in this lead undergoes digital filtering in order to remove low-frequency and high-frequency interference. Then, individual cardio complexes P-QRS-T are extracted from the signal, and the following parameters are calculated for them: minimum value, maximum value, interquartile range, mean absolute deviation, root mean square, mode, and entropy. Using the calculated parameters, a standardized training (learning) dataset is formed. The classifier model represents the k-nearest neighbors algorithm with the Manhattan metric of the distance between the objects and number of neighbors k = 9. After learning, the classifier shows the results by precision pre = 98.60%, by recall rec = 97.34%, by specificity spec = 95.93%, and by accuracy acc = 97.03%. According to the analysis of the obtained results, the suggested classifier model offers certain advantages as compared to existing alternatives.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. F. Pan and W. J. Tompkins, “Real-time QRS-detection algorithm,” IEEE Trans. Biomed. Eng. BME-32 (3), 230–236 (1985).CrossRef J. F. Pan and W. J. Tompkins, “Real-time QRS-detection algorithm,” IEEE Trans. Biomed. Eng. BME-32 (3), 230–236 (1985).CrossRef
2.
Zurück zum Zitat P. Laguna, R. Jané, and P. Caminal, “Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database,” Comput. Biomed. Res. 27 (1), 45–60 (1994).CrossRef P. Laguna, R. Jané, and P. Caminal, “Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database,” Comput. Biomed. Res. 27 (1), 45–60 (1994).CrossRef
3.
Zurück zum Zitat R. J. Martis, U. R. Acharya, and H. Adeli, “Current methods in electrocardiogram characterization,” Comput. Biol. Med. 48, 133–149 (2014).CrossRef R. J. Martis, U. R. Acharya, and H. Adeli, “Current methods in electrocardiogram characterization,” Comput. Biol. Med. 48, 133–149 (2014).CrossRef
4.
Zurück zum Zitat U. R. Acharya, H. Fujita, M. Adam, et al., “Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study,” Inf. Sci. 377, 17–29 (2017).CrossRef U. R. Acharya, H. Fujita, M. Adam, et al., “Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study,” Inf. Sci. 377, 17–29 (2017).CrossRef
5.
Zurück zum Zitat D. Mozaffarian, E. J. Benjamin, A. S. Go, et al., “Heart disease and stroke statistics — 2016 update: A report from the American Heart Association,” Circulation 133 (4), e38–e360 (2016). D. Mozaffarian, E. J. Benjamin, A. S. Go, et al., “Heart disease and stroke statistics — 2016 update: A report from the American Heart Association,” Circulation 133 (4), e38–e360 (2016).
6.
Zurück zum Zitat T. Lahiri, U. Kumar, H. Mishra, et al., “Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction,” J. Sci. Ind. Res. 68 (10), 866–870 (2009). T. Lahiri, U. Kumar, H. Mishra, et al., “Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction,” J. Sci. Ind. Res. 68 (10), 866–870 (2009).
7.
Zurück zum Zitat L. Sun, Y. Lu, K. Yang, and S. Li, “ECG analysis using multiple instance learning for myocardial infarction detection,” IEEE Trans. Biomed. Eng. 59 (12), 3348–3356 (2012).CrossRef L. Sun, Y. Lu, K. Yang, and S. Li, “ECG analysis using multiple instance learning for myocardial infarction detection,” IEEE Trans. Biomed. Eng. 59 (12), 3348–3356 (2012).CrossRef
8.
Zurück zum Zitat B. Liu, J. Liu, G. Wang, et al., “A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection,” Comput. Biol. Med. 61, 178–184 (2015).CrossRef B. Liu, J. Liu, G. Wang, et al., “A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection,” Comput. Biol. Med. 61, 178–184 (2015).CrossRef
9.
Zurück zum Zitat L. N. Sharma, R. K. Tripathy, and S. Dandapat, “Multiscale energy and eigenspace approach to detection and localization of myocardial infarction,” IEEE Trans. Biomed. Eng. 62 (7), 1827–1837 (2015).CrossRef L. N. Sharma, R. K. Tripathy, and S. Dandapat, “Multiscale energy and eigenspace approach to detection and localization of myocardial infarction,” IEEE Trans. Biomed. Eng. 62 (7), 1827–1837 (2015).CrossRef
10.
Zurück zum Zitat M. Arif, I. A. Malagore, and F. A. Afsar, “Detection and localization of myocardial infarction using K-nearest neighbor classifier,” J. Med. Syst. 36 (1), 279–289 (2012).CrossRef M. Arif, I. A. Malagore, and F. A. Afsar, “Detection and localization of myocardial infarction using K-nearest neighbor classifier,” J. Med. Syst. 36 (1), 279–289 (2012).CrossRef
11.
Zurück zum Zitat U. R. Acharya, H. Fujita, V. K. Sudarshan, et al., “Automated detection and localization of myocardial infarction using electrocardiogram: A comparative study of different leads,” Knowl.-Based Syst. 99, 146–156 (2016).CrossRef U. R. Acharya, H. Fujita, V. K. Sudarshan, et al., “Automated detection and localization of myocardial infarction using electrocardiogram: A comparative study of different leads,” Knowl.-Based Syst. 99, 146–156 (2016).CrossRef
12.
Zurück zum Zitat A. L. Baranovskii, A. N. Kalinichenko, L. A. Manilo, et al., Cardiomonitors. ECG Continuous Monitoring Equipment: Textbook, Ed. by A. L. Baranovskii and A. P. Nemirko (Radio i Svyaz’, Moscow, 1993) [in Russian]. A. L. Baranovskii, A. N. Kalinichenko, L. A. Manilo, et al., Cardiomonitors. ECG Continuous Monitoring Equipment: Textbook, Ed. by A. L. Baranovskii and A. P. Nemirko (Radio i Svyaz’, Moscow, 1993) [in Russian].
13.
Zurück zum Zitat U. R. Acharya, H. Fujita, S. L. Oh, et al., “Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals,” Inf. Sci. 415–416, 190–198 (2017).CrossRef U. R. Acharya, H. Fujita, S. L. Oh, et al., “Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals,” Inf. Sci. 415–416, 190–198 (2017).CrossRef
14.
Zurück zum Zitat M. Kachuee, S. Fazeli, and M. Sarrafzadeh, “ECG heartbeat classification: A deep transferable representation,” in Proc. 2018 IEEE Int. Conf. on Healthcare Informatics (ICHI) (New York, USA, 2018), pp. 443-444. M. Kachuee, S. Fazeli, and M. Sarrafzadeh, “ECG heartbeat classification: A deep transferable representation,” in Proc. 2018 IEEE Int. Conf. on Healthcare Informatics (ICHI) (New York, USA, 2018), pp. 443-444.
15.
Zurück zum Zitat N. Safdarian, N. J. Dabanloo, and G. Attarodi, “A new pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ECG signal,” J. Biomed. Sci. Eng. 7 (10), 818–824 (2014).CrossRef N. Safdarian, N. J. Dabanloo, and G. Attarodi, “A new pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ECG signal,” J. Biomed. Sci. Eng. 7 (10), 818–824 (2014).CrossRef
16.
Zurück zum Zitat A. L. Goldberger, L. A. Amaral, L. Glass, et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signal,” Circulation 101 (23), e215–e220 (2000). A. L. Goldberger, L. A. Amaral, L. Glass, et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signal,” Circulation 101 (23), e215–e220 (2000).
17.
Zurück zum Zitat S. Mallat, A Wavelet Tour of Signal Processing. The Sparse Way, 3rd ed. (Academic Press, 2009).MATH S. Mallat, A Wavelet Tour of Signal Processing. The Sparse Way, 3rd ed. (Academic Press, 2009).MATH
18.
Zurück zum Zitat P. Kligfield, L. S. Gettes, J. J. Bailey, et al., “Recommendations for the standardization and interpretation of the electrocardiogram. Part I. The Electrocardiogram and Its Technology: A scientific statements from AHA/ACC/HRS,” Circulation 115 (10), 1306–1324 (2007).CrossRef P. Kligfield, L. S. Gettes, J. J. Bailey, et al., “Recommendations for the standardization and interpretation of the electrocardiogram. Part I. The Electrocardiogram and Its Technology: A scientific statements from AHA/ACC/HRS,” Circulation 115 (10), 1306–1324 (2007).CrossRef
19.
Zurück zum Zitat G. Lenis, N. Pilia, A. Loewe, et al., “Comparison of baseline wander removal techniques considering the preservation of ST changes in the ischemic ECG: A simulation study,” Comput. Math. Methods Med. 2017, Article 9295029, 13 pages (2017). G. Lenis, N. Pilia, A. Loewe, et al., “Comparison of baseline wander removal techniques considering the preservation of ST changes in the ischemic ECG: A simulation study,” Comput. Math. Methods Med. 2017, Article 9295029, 13 pages (2017).
20.
Zurück zum Zitat G. V. Savostina, “Wavelet filtration of low-frequency noise in an electrocardiographic signal,” in Proc. XIV International Scientific and Practical Conference “Science and Education without Borders” (Przemyśl, Poland, 2018), Vol. 19 (Engineering Science), pp. 49–53 [in Russian]. G. V. Savostina, “Wavelet filtration of low-frequency noise in an electrocardiographic signal,” in Proc. XIV International Scientific and Practical ConferenceScience and Education without Borders” (Przemyśl, Poland, 2018), Vol. 19 (Engineering Science), pp. 49–53 [in Russian].
21.
Zurück zum Zitat A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions,” Commun. ACM 51 (1), 117–122 (2008).CrossRef A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions,” Commun. ACM 51 (1), 117–122 (2008).CrossRef
22.
Zurück zum Zitat J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves,” in Proc. 23d Int. Conf. on Machine Learning (ICML’06) (Pittsburgh, PA, 2006), pp. 233–240. J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves,” in Proc. 23d Int. Conf. on Machine Learning (ICML06) (Pittsburgh, PA, 2006), pp. 233–240.
23.
Zurück zum Zitat P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data (Cambridge Univ. Press, Cambridge, 2012; DMK Press, Moscow, 2015). P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data (Cambridge Univ. Press, Cambridge, 2012; DMK Press, Moscow, 2015).
Metadaten
Titel
Using the K-Nearest Neighbors Algorithm for Automated Detection of Myocardial Infarction by Electrocardiogram Data Entries
verfasst von
A. A. Savostin
D. V. Ritter
G. V. Savostina
Publikationsdatum
01.10.2019
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 4/2019
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661819040151

Weitere Artikel der Ausgabe 4/2019

Pattern Recognition and Image Analysis 4/2019 Zur Ausgabe

ARTIFICIAL INTELLIGENCE TECHNIQUES IN PATTERN RECOGNITION AND IMAGE ANALYSIS

Estimation of the Closeness to a Semantic Pattern of a Topical Text without Construction of Periphrases

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION AND UNDERSTANDING

Generalized Spectral-Analytical Method and Its Applications in Image Analysis and Pattern Recognition Problems

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION AND UNDERSTANDING

Descriptive Image Analysis: Part II. Descriptive Image Models