Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2022

27.05.2022 | Technical Article

Variety of Aluminum/Steel Interface Microstructures Formed in Explosively Welded Clads Followed by the Weld’s Thermal Expansion Response

verfasst von: Monika Bugajska, Lukasz Maj, Anna Jarzebska, Sylwia Terlicka, Marek Faryna, Zygmunt Szulc, Joanna Wojewoda-Budka

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study presents a detailed analysis of the interface zone microstructure formed during explosive welding of aluminum alloy A1050 with S355J2N steel. The A1050 flyer plate was shot onto the base material carbon steel plate of improved strength and weldability. Aluminum alloy is characterized by very good resistance to atmospheric corrosion and high thermal and heat conductivity. Therefore, their combination brings about very good mechanical properties, especially high strength as well as improved corrosion resistance, which makes these materials potential candidates as an anode for active electrochemical corrosion protection applications. To characterize the microstructure of the welds, the observations were carried out by means of scanning and transmission electron microscopy techniques. Investigations performed on the cross sections allowed to study the interface morphology, as well as the microstructural changes of the joined materials in the vicinity of the bonding zone both at the micro- and nanoscale. The analysis of the results presented in the paper shows that within the wavy interface characteristic zones can be identified-melted regions and apparently sharp interface. The examined complex microstructures were composed of solid solutions, intermetallic phases, and quasicrystals. Moreover, for the first time, the thermal expansion measurements of A1050/S355J2N explosively welded platers were carried out.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Fuente, Corrosion of Aluminum, Aluminum Alloys, and Composites, Encyclopedia of Materials: Metals and Alloys, Vol 1, 1st ed., F.G. Caballero, Ed., Elsevier, 2022, p 160–169. D. Fuente, Corrosion of Aluminum, Aluminum Alloys, and Composites, Encyclopedia of Materials: Metals and Alloys, Vol 1, 1st ed., F.G. Caballero, Ed., Elsevier, 2022, p 160–169.
2.
Zurück zum Zitat G. Sui, J. Li, H. Li, F. Sun, T. Zhang and H. Fu, Investigation on the Explosive Welding Mechanism of Corrosion-Resisting Aluminum and Stainless Steel Tubes Through Finite Element Simulation and Experiments, Int. J. Miner. Metall. Mater., 2012, 19, p 151–158.CrossRef G. Sui, J. Li, H. Li, F. Sun, T. Zhang and H. Fu, Investigation on the Explosive Welding Mechanism of Corrosion-Resisting Aluminum and Stainless Steel Tubes Through Finite Element Simulation and Experiments, Int. J. Miner. Metall. Mater., 2012, 19, p 151–158.CrossRef
3.
Zurück zum Zitat K. Kimapong and T. Watanabe, Friction Stir Welding of Aluminum Alloy to Steel, Weld. J., 2004, 83, p 277S-282S. K. Kimapong and T. Watanabe, Friction Stir Welding of Aluminum Alloy to Steel, Weld. J., 2004, 83, p 277S-282S.
4.
Zurück zum Zitat P. Wang, X. Chen, Q. Pan, B. Madigan and J. Long, Laser Welding Dissimilar Materials of Aluminum to Steel: An Overview, Int. J. Adv. Manuf. Tech., 2016, 87, p 3081–3090.CrossRef P. Wang, X. Chen, Q. Pan, B. Madigan and J. Long, Laser Welding Dissimilar Materials of Aluminum to Steel: An Overview, Int. J. Adv. Manuf. Tech., 2016, 87, p 3081–3090.CrossRef
5.
Zurück zum Zitat P. Prangnell, F. Haddadi and Y.C. Chen, Ultrasonic Spot Welding of Aluminium to Steel for Automotive Applications—Microstructure and Optimisation, Mater. Sci. Technol., 2011, 27, p 617–624.CrossRef P. Prangnell, F. Haddadi and Y.C. Chen, Ultrasonic Spot Welding of Aluminium to Steel for Automotive Applications—Microstructure and Optimisation, Mater. Sci. Technol., 2011, 27, p 617–624.CrossRef
6.
Zurück zum Zitat H.D. Manesh and T.A. Karimi, Study of Mechanisms of Cold roll Welding of Aluminium Alloy to Steel Strip, Mater. Sci. Technol., 2004, 20, p 1064–1068.CrossRef H.D. Manesh and T.A. Karimi, Study of Mechanisms of Cold roll Welding of Aluminium Alloy to Steel Strip, Mater. Sci. Technol., 2004, 20, p 1064–1068.CrossRef
7.
Zurück zum Zitat J.F. Kowalick and R. Hay, A Mechanism of Explosive Bonding, Metall. Trans., 1971, 2, p 1953–1958.CrossRef J.F. Kowalick and R. Hay, A Mechanism of Explosive Bonding, Metall. Trans., 1971, 2, p 1953–1958.CrossRef
8.
Zurück zum Zitat S. Saravanan and K. Raghukandan, Thermal Kinetics in Explosive Cladding of Dissimilar Metals, Sci. Techn. Weld. Join., 2012, 17, p 99–103.CrossRef S. Saravanan and K. Raghukandan, Thermal Kinetics in Explosive Cladding of Dissimilar Metals, Sci. Techn. Weld. Join., 2012, 17, p 99–103.CrossRef
9.
Zurück zum Zitat B.B. Sherpa, D.K.B. Pal and U. Batra, Study of the Explosive Welding Process and Applications, Advances in Applied Physical and Chemical Sciences: A Sustainable Approach, Chap 5, Excellent Publishing House, New Delhi, 2014. B.B. Sherpa, D.K.B. Pal and U. Batra, Study of the Explosive Welding Process and Applications, Advances in Applied Physical and Chemical Sciences: A Sustainable Approach, Chap 5, Excellent Publishing House, New Delhi, 2014.
10.
Zurück zum Zitat M. Acarer and B. Demir, An Investigation of Mechanical and Metallurgical Properties of Explosive Welded aluminum–Dual Phase Steel, Mater. Lett., 2008, 62(25), p 4158–4160.CrossRef M. Acarer and B. Demir, An Investigation of Mechanical and Metallurgical Properties of Explosive Welded aluminum–Dual Phase Steel, Mater. Lett., 2008, 62(25), p 4158–4160.CrossRef
11.
Zurück zum Zitat J.H. Han, J.P. Ahn and M.C. Shin, Effect of Interlayer Thickness on Shear Deformation Behavior of AA5083 Aluminum Alloy/SS41 Steel Plates Manufactured by Explosive Welding, J Mater Sci, 2003, 38, p 13–18.CrossRef J.H. Han, J.P. Ahn and M.C. Shin, Effect of Interlayer Thickness on Shear Deformation Behavior of AA5083 Aluminum Alloy/SS41 Steel Plates Manufactured by Explosive Welding, J Mater Sci, 2003, 38, p 13–18.CrossRef
12.
Zurück zum Zitat M.M. Hoseini Athar and B. Tolaminejad, Weldability Window and the Effect of Interface Morphology on the Properties of Al/Cu/Al Laminated Composites Fabricated by Explosive Welding, Mater. Des., 2015, 86, p 516–525.CrossRef M.M. Hoseini Athar and B. Tolaminejad, Weldability Window and the Effect of Interface Morphology on the Properties of Al/Cu/Al Laminated Composites Fabricated by Explosive Welding, Mater. Des., 2015, 86, p 516–525.CrossRef
13.
Zurück zum Zitat G.H.S.F.L. Carvalho, I. Galvao, R. Mendes, R.M. Leal and A. Loureiro, Explosive Welding of Aluminium to Stainless Steel, J. Mater. Proc. Tech., 2018, 262, p 340–349.CrossRef G.H.S.F.L. Carvalho, I. Galvao, R. Mendes, R.M. Leal and A. Loureiro, Explosive Welding of Aluminium to Stainless Steel, J. Mater. Proc. Tech., 2018, 262, p 340–349.CrossRef
14.
Zurück zum Zitat G.H.S.F.L. Carvalho, I. Galvao, R. Mendes, R.M. Leal, A. Loureiro. Aluminium-to-Steel Cladding by Explosive Welding, Metals, 2020, 10, p 1062.CrossRef G.H.S.F.L. Carvalho, I. Galvao, R. Mendes, R.M. Leal, A. Loureiro. Aluminium-to-Steel Cladding by Explosive Welding, Metals, 2020, 10, p 1062.CrossRef
15.
Zurück zum Zitat S. Terlicka, A. Dębski, W. Gierlotka, A. Wierzbicka-Miernika, A. Budziak, A. Sypien, M. Zabrocki and W. Gąsior, Structural and Physical Studies of the Ag-Rich Alloys from Ag-Li System, Calphad, 2020, 68, 101739.CrossRef S. Terlicka, A. Dębski, W. Gierlotka, A. Wierzbicka-Miernika, A. Budziak, A. Sypien, M. Zabrocki and W. Gąsior, Structural and Physical Studies of the Ag-Rich Alloys from Ag-Li System, Calphad, 2020, 68, 101739.CrossRef
16.
Zurück zum Zitat S. Terlicka, A. Dębski, A. Sypien, W. Gąsior and A. Budziak, Determination of Thermophysical and Thermodynamic Properties of Ag-Mg Alloys, Mater. Today Commun., 2021, 29, p 102946.CrossRef S. Terlicka, A. Dębski, A. Sypien, W. Gąsior and A. Budziak, Determination of Thermophysical and Thermodynamic Properties of Ag-Mg Alloys, Mater. Today Commun., 2021, 29, p 102946.CrossRef
20.
Zurück zum Zitat J.L. Murray, Fe–Al Binary Phase Diagram, Alloy Phase Diagrams. H. Baker Ed., ASM International, USA, 1992 J.L. Murray, Fe–Al Binary Phase Diagram, Alloy Phase Diagrams. H. Baker Ed., ASM International, USA, 1992
21.
Zurück zum Zitat I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo and A.M. Jorge Jr., High Cooling Rates and Metastable Phases at the Interfaces of Explosively Welded Materials, Acta Mater., 2017, 135, p 277–289.CrossRef I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo and A.M. Jorge Jr., High Cooling Rates and Metastable Phases at the Interfaces of Explosively Welded Materials, Acta Mater., 2017, 135, p 277–289.CrossRef
22.
Zurück zum Zitat G.H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal and A. Loureiro, Aluminum-to-Steel Cladding by Explosive Welding, Metals, 2020, 10, p 1062.CrossRef G.H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal and A. Loureiro, Aluminum-to-Steel Cladding by Explosive Welding, Metals, 2020, 10, p 1062.CrossRef
23.
Zurück zum Zitat G.R. Cowan, O.R. Bergmann and A.H. Holtzman, Mechanism of Bond Zone Wave Formation in Explosion-Clad Metals, Metall. Trans., 1971, 2, p 3145–3155.CrossRef G.R. Cowan, O.R. Bergmann and A.H. Holtzman, Mechanism of Bond Zone Wave Formation in Explosion-Clad Metals, Metall. Trans., 1971, 2, p 3145–3155.CrossRef
24.
Zurück zum Zitat I.A. Bataev, A.A. Bataev, E.A. Prikhodko, V.I. Mali and M.A. Esikov, Formation and Structure of Vortex Zones in Explosive Welding of Carbon Steel. Proceedings of 6th International Forum on Strategic Technology, Harbin, China, 2011, p 1–5. I.A. Bataev, A.A. Bataev, E.A. Prikhodko, V.I. Mali and M.A. Esikov, Formation and Structure of Vortex Zones in Explosive Welding of Carbon Steel. Proceedings of 6th International Forum on Strategic Technology, Harbin, China, 2011, p 1–5.
25.
Zurück zum Zitat M. Prażmowski, Mechanical Properties of Zirconium/Steel Bimetal Fabricated by Means of Explosive Welding at Varied Detonation Velocities, Arch. Metall. Mater., 2014, 59, p 1137–1142.CrossRef M. Prażmowski, Mechanical Properties of Zirconium/Steel Bimetal Fabricated by Means of Explosive Welding at Varied Detonation Velocities, Arch. Metall. Mater., 2014, 59, p 1137–1142.CrossRef
26.
Zurück zum Zitat P. Manikandan, K. Hokamoto, A.A. Deribas, K. Raghukandan and R. Tomoshige, Explosive Welding of Titanium/Stainless Steel by Controlling Energetic Conditions, Mater. Trans., 2006, 47, p 2049–2055.CrossRef P. Manikandan, K. Hokamoto, A.A. Deribas, K. Raghukandan and R. Tomoshige, Explosive Welding of Titanium/Stainless Steel by Controlling Energetic Conditions, Mater. Trans., 2006, 47, p 2049–2055.CrossRef
27.
Zurück zum Zitat M. Gerland, H. Presles, J. Guin and D. Bertheau, Explosive Cladding of a Thin Ni-Film to an Aluminium Alloy, Mater. Sci. Eng., A, 2000, 280, p 311–319.CrossRef M. Gerland, H. Presles, J. Guin and D. Bertheau, Explosive Cladding of a Thin Ni-Film to an Aluminium Alloy, Mater. Sci. Eng., A, 2000, 280, p 311–319.CrossRef
28.
Zurück zum Zitat I. Kwiecien, A. Wierzbicka-Miernik, M. Szczerba, P. Bobrowski, Z. Szulc and J. Wojewoda-Budka, On the Disintegration of A1050/Ni201 Explosively Welded Clads Induced by Long-Term Annealing, Materials, 2021, 14, p 2931.CrossRef I. Kwiecien, A. Wierzbicka-Miernik, M. Szczerba, P. Bobrowski, Z. Szulc and J. Wojewoda-Budka, On the Disintegration of A1050/Ni201 Explosively Welded Clads Induced by Long-Term Annealing, Materials, 2021, 14, p 2931.CrossRef
29.
Zurück zum Zitat R. Kaçar and M. Acarer, Microstructure–Property Relationship in Explosively Welded Duplex Stainless Steel–steel, Mater. Sci. Eng., A, 2003, 363, p 290–296.CrossRef R. Kaçar and M. Acarer, Microstructure–Property Relationship in Explosively Welded Duplex Stainless Steel–steel, Mater. Sci. Eng., A, 2003, 363, p 290–296.CrossRef
30.
Zurück zum Zitat M. Honarpisheh, M. Asemabadi and M. Sedighi, Investigation of Annealing Treatment on the Interfacial Properties of Explosive-Welded Al/Cu/Al Multilayer, Mater. Des., 2012, 37, p 122–127.CrossRef M. Honarpisheh, M. Asemabadi and M. Sedighi, Investigation of Annealing Treatment on the Interfacial Properties of Explosive-Welded Al/Cu/Al Multilayer, Mater. Des., 2012, 37, p 122–127.CrossRef
31.
Zurück zum Zitat M.J. Rathod and M. Kutsuna, Joining of Aluminum Alloy 5052 and Low-Carbon Steel by Laser Roll Welding, Weld. J., 2004, 83, p 16–26. M.J. Rathod and M. Kutsuna, Joining of Aluminum Alloy 5052 and Low-Carbon Steel by Laser Roll Welding, Weld. J., 2004, 83, p 16–26.
33.
Zurück zum Zitat V. Elser, Indexing Problems in Quasicrystal Diffraction, Phys. Rev. B, 1985, 32, p 4892–4898.CrossRef V. Elser, Indexing Problems in Quasicrystal Diffraction, Phys. Rev. B, 1985, 32, p 4892–4898.CrossRef
34.
Zurück zum Zitat M.V. Jarić, Diffraction from Quasicrystals: Geometric Structure Factor, Phys. Rev. B, 1986, 34, p 4685–4698.CrossRef M.V. Jarić, Diffraction from Quasicrystals: Geometric Structure Factor, Phys. Rev. B, 1986, 34, p 4685–4698.CrossRef
37.
Zurück zum Zitat Y.S. Touloukian, R.K. Kirby, R.E. Taylor and P.D. Desai, Thermal Expansion: Metallic Elements and Alloys, Thermophysical Properties of Matter. Y.S. Touloukian, C.Y. Ho Ed., Plenum, New York, 1977 Y.S. Touloukian, R.K. Kirby, R.E. Taylor and P.D. Desai, Thermal Expansion: Metallic Elements and Alloys, Thermophysical Properties of Matter. Y.S. Touloukian, C.Y. Ho Ed., Plenum, New York, 1977
38.
Zurück zum Zitat G. Bastin, F. J. J. van Loo, J. W. G. A. Vrolijk and L. R. Wolff, Crystallography of Aligned Fe-Al Eutectoid, J. Cryst. Growth, 1978, 43(745), p 751. G. Bastin, F. J. J. van Loo, J. W. G. A. Vrolijk and L. R. Wolff, Crystallography of Aligned Fe-Al Eutectoid, J. Cryst. Growth, 1978, 43(745), p 751.
39.
Zurück zum Zitat M. Ellner and J. Mayer, X-ray and Electron Diffraction Investigations on the Liquid-Quenched Fe2Al5, Scripta Metall. Mater., 1992, 26, p 501–504.CrossRef M. Ellner and J. Mayer, X-ray and Electron Diffraction Investigations on the Liquid-Quenched Fe2Al5, Scripta Metall. Mater., 1992, 26, p 501–504.CrossRef
41.
Zurück zum Zitat ASM Ready Reference, Thermal Properties of Metals, Chapter 2: Thermal Expansion, F. Cverna, Ed., ASM International, Materials Park, Ohio, USA, 2002. ASM Ready Reference, Thermal Properties of Metals, Chapter 2: Thermal Expansion, F. Cverna, Ed., ASM International, Materials Park, Ohio, USA, 2002.
44.
Zurück zum Zitat M. Sokolov, A. Salminen, M. Kuznetsov and I. Tsibulskiy, Laser Welding and Weld Hardness Analysis of Thick Section S355 Structural Steel, Mater. Des., 2011, 32, p 5127–5131.CrossRef M. Sokolov, A. Salminen, M. Kuznetsov and I. Tsibulskiy, Laser Welding and Weld Hardness Analysis of Thick Section S355 Structural Steel, Mater. Des., 2011, 32, p 5127–5131.CrossRef
Metadaten
Titel
Variety of Aluminum/Steel Interface Microstructures Formed in Explosively Welded Clads Followed by the Weld’s Thermal Expansion Response
verfasst von
Monika Bugajska
Lukasz Maj
Anna Jarzebska
Sylwia Terlicka
Marek Faryna
Zygmunt Szulc
Joanna Wojewoda-Budka
Publikationsdatum
27.05.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07027-5

Weitere Artikel der Ausgabe 9/2022

Journal of Materials Engineering and Performance 9/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.