Skip to main content
Erschienen in: Microsystem Technologies 5/2016

20.02.2015 | Technical Paper

Vibration analysis of initially curved single walled carbon nanotube with vacancy defect for ultrahigh frequency nanoresonators

verfasst von: Mojtaba Amjadipour, Dzung Viet Dao, Nunzio Motta

Erschienen in: Microsystem Technologies | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Single walled carbon nanotubes (SWCNTs) are ideal choices for resonators due to its ultrahigh natural frequency. Fundamental frequency of resonators significantly affects their functionality and performance; therefore, an accurate prediction of SWCNTs’ natural frequency is vital for designing and developing such devices. In reality, CNTs are not straight and perfect; indeed, they have some degree of vacancy defect and waviness, which occurs during growth and manipulation processes. This research investigates for the first time the combination effects of both initial curvature and vacancy defects on vibrational behaviour of SWCNTs in order to make the simulation closer to the “real world”. In this study, an efficient method based on the molecular dynamics model and the finite element method is used to simulate wavy SWCNTs with vacancy defects. Zigzag carbon nanotube with chirality indices (5, 0) is considered. Accuracy of our modelling method is verified by comparing our results with the results obtained from previous studies in simulating ideal SWCNT natural frequency. The effects of vacancy, vacancy location, curvature and aspect ratio on natural vibration of the defected wavy SWCNTs have been investigated, and a parameter of critical waviness ratio has been defined for the first time to emphasize the combination effect of vacancies and waviness on the natural frequency of SWCNTs. Our results show that critical waviness is sensitive to the aspect ratio and indicate that by increasing the length of SWCNTs, the critical waviness ratio increases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bell JM, Goh RGS, Waclawik ER, Giulianini M, Motta N (2008) Polymer-carbon nanotube composites: basic science and applications. Mater Forum 32:144–152 Bell JM, Goh RGS, Waclawik ER, Giulianini M, Motta N (2008) Polymer-carbon nanotube composites: basic science and applications. Mater Forum 32:144–152
Zurück zum Zitat Bodily BH, Sun CT (2003) Structural and equivalent continuum properties of single-walled carbon nanotubes. Int J Mater Prod Technol 18(4):381–397CrossRef Bodily BH, Sun CT (2003) Structural and equivalent continuum properties of single-walled carbon nanotubes. Int J Mater Prod Technol 18(4):381–397CrossRef
Zurück zum Zitat Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197CrossRef Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197CrossRef
Zurück zum Zitat Dao DV, Bui TT, Nakamura K, Dau VT, Yamada T, Hata K, Sugiyama S (2010) Towards highly sensitive strain sensing based on nanostructured materials. Adv Nat Sci Nanosci Nanotechnol 1(4):045012CrossRef Dao DV, Bui TT, Nakamura K, Dau VT, Yamada T, Hata K, Sugiyama S (2010) Towards highly sensitive strain sensing based on nanostructured materials. Adv Nat Sci Nanosci Nanotechnol 1(4):045012CrossRef
Zurück zum Zitat Dau VT, Yamada T, Dao DV, Tung BT, Hata K, Sugiyama S (2010a) Integrated CNTs thin film for MEMS mechanical sensors. Microelectron J 41(12):860–864CrossRef Dau VT, Yamada T, Dao DV, Tung BT, Hata K, Sugiyama S (2010a) Integrated CNTs thin film for MEMS mechanical sensors. Microelectron J 41(12):860–864CrossRef
Zurück zum Zitat Dau VT, Dao DV, Yamada T, Tung BT, Hata K, Sugiyama S (2010b) Integration of SWNT film into MEMS for a micro-thermoelectric device. Smart Mater Struct 19(7):075003CrossRef Dau VT, Dao DV, Yamada T, Tung BT, Hata K, Sugiyama S (2010b) Integration of SWNT film into MEMS for a micro-thermoelectric device. Smart Mater Struct 19(7):075003CrossRef
Zurück zum Zitat De Los Santos HJ (1999) Introduction to micorelectromechanical (MEM) microwave systems(Book). Artech House, Norwood, p 1999 De Los Santos HJ (1999) Introduction to micorelectromechanical (MEM) microwave systems(Book). Artech House, Norwood, p 1999
Zurück zum Zitat Farsadi M, Öchsner A, Rahmandoust M. (2012) Numerical investigation of composite materials reinforced with waved carbon nanotubes. J Compos Mater: 0021998312448495 Farsadi M, Öchsner A, Rahmandoust M. (2012) Numerical investigation of composite materials reinforced with waved carbon nanotubes. J Compos Mater: 0021998312448495
Zurück zum Zitat Georgantzinos SK, Giannopoulos GI, Anifantis NK (2009) An efficient numerical model for vibration analysis of single-walled carbon nanotubes. Comput Mech 43(6):731–741CrossRefMATH Georgantzinos SK, Giannopoulos GI, Anifantis NK (2009) An efficient numerical model for vibration analysis of single-walled carbon nanotubes. Comput Mech 43(6):731–741CrossRefMATH
Zurück zum Zitat Ghavamian A, Öchsner A (2013) Numerical modeling of eigenmodes and eigenfrequencies of single-and multi-walled carbon nanotubes under the influence of atomic defects. Comput Mater Sci 72:42–48CrossRef Ghavamian A, Öchsner A (2013) Numerical modeling of eigenmodes and eigenfrequencies of single-and multi-walled carbon nanotubes under the influence of atomic defects. Comput Mater Sci 72:42–48CrossRef
Zurück zum Zitat Gibson RF, Ayorinde EO, Wen YF (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67(1):1–28CrossRef Gibson RF, Ayorinde EO, Wen YF (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67(1):1–28CrossRef
Zurück zum Zitat Goh RG, Bell JM, Motta N, Ho PKH, Waclawik ER (2009) < i > p </i > -Channel, < i > n </i > -Channel and ambipolar field-effect transistors based on functionalized carbon nanotube networks. Superlattices Microstruct 1:347–356CrossRef Goh RG, Bell JM, Motta N, Ho PKH, Waclawik ER (2009) < i > p </i > -Channel, < i > n </i > -Channel and ambipolar field-effect transistors based on functionalized carbon nanotube networks. Superlattices Microstruct 1:347–356CrossRef
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef
Zurück zum Zitat Imani Yengejeh S, Delgado JM, de Lima AGB, Öchsner A. (2014). Numerical Simulation of the Vibration Behavior of Curved Carbon Nanotubes. Adv Mater Sci Eng. doi:10.1155/2014/815340 Imani Yengejeh S, Delgado JM, de Lima AGB, Öchsner A. (2014). Numerical Simulation of the Vibration Behavior of Curved Carbon Nanotubes. Adv Mater Sci Eng. doi:10.​1155/​2014/​815340
Zurück zum Zitat Jensen K, Weldon J, Garcia H, Zettl A (2007) Nanotube radio. Nano Lett 7(11):3508–3511CrossRef Jensen K, Weldon J, Garcia H, Zettl A (2007) Nanotube radio. Nano Lett 7(11):3508–3511CrossRef
Zurück zum Zitat Jensen K, Kim K, Zettl A (2008) An atomic-resolution nanomechanical mass sensor. Nat Nanotechnol 3(9):533–537CrossRef Jensen K, Kim K, Zettl A (2008) An atomic-resolution nanomechanical mass sensor. Nat Nanotechnol 3(9):533–537CrossRef
Zurück zum Zitat Jorgensen WL, Severance DL (1990) Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene. J Am Chem Soc 112(12):4768–4774CrossRef Jorgensen WL, Severance DL (1990) Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene. J Am Chem Soc 112(12):4768–4774CrossRef
Zurück zum Zitat Karami Mohammadi A, Amjadipoor M (2011) Effect of vacancy defect on natural vibration of single walled carbon nanotube as ultrahigh nanoresonators. J Vibroeng JVE 3:414–422 Karami Mohammadi A, Amjadipoor M (2011) Effect of vacancy defect on natural vibration of single walled carbon nanotube as ultrahigh nanoresonators. J Vibroeng JVE 3:414–422
Zurück zum Zitat Li C, Chou TW (2003a) Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys Rev B 68(7):073405CrossRef Li C, Chou TW (2003a) Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys Rev B 68(7):073405CrossRef
Zurück zum Zitat Li C, Chou TW (2003b) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499CrossRefMATH Li C, Chou TW (2003b) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499CrossRefMATH
Zurück zum Zitat Motta N (2012) Nanostructures for sensors, electronics, energy and environment. Beilstein J Nanotechnol 3(1):351–352MathSciNetCrossRef Motta N (2012) Nanostructures for sensors, electronics, energy and environment. Beilstein J Nanotechnol 3(1):351–352MathSciNetCrossRef
Zurück zum Zitat Nasdala L, Ernst G (2005) Development of a 4-node finite element for the computation of nano-structured materials. Comput Mater Sci 33(4):443–458CrossRef Nasdala L, Ernst G (2005) Development of a 4-node finite element for the computation of nano-structured materials. Comput Mater Sci 33(4):443–458CrossRef
Zurück zum Zitat Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62(14):1869–1880CrossRef Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62(14):1869–1880CrossRef
Zurück zum Zitat Ouakad HM, Younis MI (2011) Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. J Sound Vib 330(13):3182–3195CrossRef Ouakad HM, Younis MI (2011) Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. J Sound Vib 330(13):3182–3195CrossRef
Zurück zum Zitat Poncharal P, Wang ZL, Ugarte D, De Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516CrossRef Poncharal P, Wang ZL, Ugarte D, De Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516CrossRef
Zurück zum Zitat Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870CrossRef Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870CrossRef
Zurück zum Zitat Rappé AK, Casewit CJ, Colwell KS, Goddard Iii WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035CrossRef Rappé AK, Casewit CJ, Colwell KS, Goddard Iii WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035CrossRef
Zurück zum Zitat Sazonova VA (2006) A tunable Carbon Nanotube Resonator. Ph.D. Thesis, Department of Physics, Cornell University Sazonova VA (2006) A tunable Carbon Nanotube Resonator. Ph.D. Thesis, Department of Physics, Cornell University
Zurück zum Zitat Shiraishi N, Ikehara T, Dao DV, Sugiyama S, Ando Y (2013) Fabrication and testing of polymer cantilevers for VOC sensors. Sens Actuat A 202:233–239CrossRef Shiraishi N, Ikehara T, Dao DV, Sugiyama S, Ando Y (2013) Fabrication and testing of polymer cantilevers for VOC sensors. Sens Actuat A 202:233–239CrossRef
Zurück zum Zitat Suenaga K, Wakabayashi H, Koshino M, Sato Y, Urita K, Iijima S (2007) Imaging active topological defects in carbon nanotubes. Nat Nanotechnol 2(6):358–360CrossRef Suenaga K, Wakabayashi H, Koshino M, Sato Y, Urita K, Iijima S (2007) Imaging active topological defects in carbon nanotubes. Nat Nanotechnol 2(6):358–360CrossRef
Zurück zum Zitat Zhu Y, Dao DV, Woodfield P (2014) A fluid density sensor based on a resonant tube. Adv Natural Sci Nanosci Nanotechnol 5(3):035010CrossRef Zhu Y, Dao DV, Woodfield P (2014) A fluid density sensor based on a resonant tube. Adv Natural Sci Nanosci Nanotechnol 5(3):035010CrossRef
Metadaten
Titel
Vibration analysis of initially curved single walled carbon nanotube with vacancy defect for ultrahigh frequency nanoresonators
verfasst von
Mojtaba Amjadipour
Dzung Viet Dao
Nunzio Motta
Publikationsdatum
20.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2470-2

Weitere Artikel der Ausgabe 5/2016

Microsystem Technologies 5/2016 Zur Ausgabe

Neuer Inhalt