Skip to main content
Erschienen in: Mechanics of Composite Materials 4/2023

04.09.2023

Vibration and the Buckling Response of Functionally Graded Plates According to a Refined Hyperbolic Shear Deformation Theory

verfasst von: J. Singh, A. Kumar

Erschienen in: Mechanics of Composite Materials | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A first attempt is made to study the free vibrations and the buckling response of functionally graded plates using a refined hyperbolic shear deformation theory. This theory incorporates high-order effects of shear and normal deformation with accounting for thickness stretching. A combination of hyperbolic and polynomial functions ensures a parabolic profile of shear stresses and the enforcement of zero shear stresses at the top and bottom surfaces of the plates. The need for a shear correction factor is eliminated. The plates are made from advanced composites consisting of a functionally graded material varying from a ceramic to metallic phase across the thickness. The mechanical properties of the plates are homogenized by the Voigt rule of mixtures and the Mori- Tanaka scheme. A C0 finite-element model is developed for the present theory and is included in the MATLAB code. A convergence study is performed and the efficacy of the model is validated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Udupa, S. S. Rao, and K. V. Gangadharan, “Functionally graded composite materials: An overview,” Procedia Mater., Sci., 5, 1291-1299 (2014). G. Udupa, S. S. Rao, and K. V. Gangadharan, “Functionally graded composite materials: An overview,” Procedia Mater., Sci., 5, 1291-1299 (2014).
2.
Zurück zum Zitat S. S. Vel and R. C. Batra, “Three-dimensional exact solution for the vibration of functionally graded rectangular plates,” J. Sound Vib., 272, No. 3-5, 703-730 (2004).CrossRef S. S. Vel and R. C. Batra, “Three-dimensional exact solution for the vibration of functionally graded rectangular plates,” J. Sound Vib., 272, No. 3-5, 703-730 (2004).CrossRef
3.
Zurück zum Zitat A. Alibeigloo, “Exact solution for thermo-elastic response of functionally graded rectangular plates,” Compos. Struct., 92, No. 1, 113-121 (2010).CrossRef A. Alibeigloo, “Exact solution for thermo-elastic response of functionally graded rectangular plates,” Compos. Struct., 92, No. 1, 113-121 (2010).CrossRef
4.
Zurück zum Zitat S. Hosseini-Hashemi, M. Fadaee, and S. R. Atashipour, “A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates,” Int. J. Mech. Sci., 53, No. 1, 11-22 (2011).CrossRef S. Hosseini-Hashemi, M. Fadaee, and S. R. Atashipour, “A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates,” Int. J. Mech. Sci., 53, No. 1, 11-22 (2011).CrossRef
5.
Zurück zum Zitat G. Jin, Z. Su, S. Shi, T. Ye, and S. Gao, “Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions,” Compos. Struct., 108, 565-577 (2014).CrossRef G. Jin, Z. Su, S. Shi, T. Ye, and S. Gao, “Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions,” Compos. Struct., 108, 565-577 (2014).CrossRef
6.
Zurück zum Zitat M. M. Najafizadeh and H. R. Heydari, “An exact solution for buckling of functionally graded circular plates based on higherorder shear deformation plate theory under uniform radial compression,” Int. J. Mech. Sci., 50, No. 3, 603-612 (2008).CrossRef M. M. Najafizadeh and H. R. Heydari, “An exact solution for buckling of functionally graded circular plates based on higherorder shear deformation plate theory under uniform radial compression,” Int. J. Mech. Sci., 50, No. 3, 603-612 (2008).CrossRef
7.
Zurück zum Zitat J. N. Reddy, Theory and Analysis of Elastic Plates and Shells. CRC Press (1999). J. N. Reddy, Theory and Analysis of Elastic Plates and Shells. CRC Press (1999).
8.
Zurück zum Zitat M. Touratier, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571-571 (1973).CrossRef M. Touratier, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571-571 (1973).CrossRef
9.
Zurück zum Zitat A. M. A. Neves, A. J. M. Ferreira, E. Carrera, M. Cinefra, C.M.C. Roque, R.M.N. Jorge, and C.M. Soares, “Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique,” Compos. Part B, 44, No. 1, 657-674 (2013).CrossRef A. M. A. Neves, A. J. M. Ferreira, E. Carrera, M. Cinefra, C.M.C. Roque, R.M.N. Jorge, and C.M. Soares, “Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique,” Compos. Part B, 44, No. 1, 657-674 (2013).CrossRef
10.
Zurück zum Zitat A. Barut, E. Madenci, T. Anderson, and A. Tessler, “Equivalent single-layer theory for a complete stress field in sandwich panels under arbitrarily distributed loading,” Compos. Struct., 58, No. 4, 483-495 (2002).CrossRef A. Barut, E. Madenci, T. Anderson, and A. Tessler, “Equivalent single-layer theory for a complete stress field in sandwich panels under arbitrarily distributed loading,” Compos. Struct., 58, No. 4, 483-495 (2002).CrossRef
11.
Zurück zum Zitat D. K. Jha, T. Kant, and R. K. Singh, “Free vibration response of functionally graded thick plates with shear and normal deformations effects,” Compos. Struct., 96, 799-823 (2013).CrossRef D. K. Jha, T. Kant, and R. K. Singh, “Free vibration response of functionally graded thick plates with shear and normal deformations effects,” Compos. Struct., 96, 799-823 (2013).CrossRef
12.
Zurück zum Zitat A. A. Khdeir and J. N. Reddy, “Free vibrations of laminated composite plates using second-order shear deformation theory,” Comput. Struct., 71, No. 6, 617-626 (1999).CrossRef A. A. Khdeir and J. N. Reddy, “Free vibrations of laminated composite plates using second-order shear deformation theory,” Comput. Struct., 71, No. 6, 617-626 (1999).CrossRef
13.
Zurück zum Zitat S. Yang and F. G. Yuan, “Transient wave propagation of isotropic plates using a higher-order plate theory,” Int. J. Solids Struct., 42, No. 14, 4115-4153 (2005).CrossRef S. Yang and F. G. Yuan, “Transient wave propagation of isotropic plates using a higher-order plate theory,” Int. J. Solids Struct., 42, No. 14, 4115-4153 (2005).CrossRef
14.
Zurück zum Zitat L. V. Tran, C. H. Thai, H. T. Le, B. S. Gan, J. Lee, and H. Nguyen-Xuan, “Isogeometric analysis of laminated composite plates based on a four-variable refined plate theory,” Eng. Anal. Bound. Elem., 47, 68-81 (2014).CrossRef L. V. Tran, C. H. Thai, H. T. Le, B. S. Gan, J. Lee, and H. Nguyen-Xuan, “Isogeometric analysis of laminated composite plates based on a four-variable refined plate theory,” Eng. Anal. Bound. Elem., 47, 68-81 (2014).CrossRef
15.
Zurück zum Zitat T. K. Nguyen, T. T. P. Nguyen, T. P. Vo, and H. T. Thai, “Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory,” Compos. Part B, 76, 273-285 (2015).CrossRef T. K. Nguyen, T. T. P. Nguyen, T. P. Vo, and H. T. Thai, “Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory,” Compos. Part B, 76, 273-285 (2015).CrossRef
16.
Zurück zum Zitat N. Grover, B. N. Singh, and D. K. Maiti, “A general assessment of a new inverse trigonometric shear deformation theory for laminated composite and sandwich plates using finite element method,” Proc. Inst. Mech. Eng. G, 228, No. 10, 1788-1801 (2013).CrossRef N. Grover, B. N. Singh, and D. K. Maiti, “A general assessment of a new inverse trigonometric shear deformation theory for laminated composite and sandwich plates using finite element method,” Proc. Inst. Mech. Eng. G, 228, No. 10, 1788-1801 (2013).CrossRef
17.
Zurück zum Zitat K. P. Soldatos, “A transverse shear deformation theory for homogeneous monoclinic plates,” Acta Mech., 94, No. 3, 195-220 (1992).CrossRef K. P. Soldatos, “A transverse shear deformation theory for homogeneous monoclinic plates,” Acta Mech., 94, No. 3, 195-220 (1992).CrossRef
18.
Zurück zum Zitat S. S. Akavci, “Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation,” J. Reinf. Plast. Compos., 26, No. 18, 1907-1919 (2007).CrossRef S. S. Akavci, “Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation,” J. Reinf. Plast. Compos., 26, No. 18, 1907-1919 (2007).CrossRef
19.
Zurück zum Zitat M. Karama, K. S. Afaq, and S. Mistou, “A new theory for laminated composite plates,” Proc. Inst. Mech. Eng. L, 223, No. 2, 53-62 (2009). M. Karama, K. S. Afaq, and S. Mistou, “A new theory for laminated composite plates,” Proc. Inst. Mech. Eng. L, 223, No. 2, 53-62 (2009).
20.
Zurück zum Zitat M. Aydogdu, “A new shear deformation theory for laminated composite plates,” Compos. Struct., 89, No. 1, 94-101 (2009).CrossRef M. Aydogdu, “A new shear deformation theory for laminated composite plates,” Compos. Struct., 89, No. 1, 94-101 (2009).CrossRef
21.
Zurück zum Zitat J. L. Mantari and C. G. Soares, “Static response of advanced composite plates by a new non-polynomial higher-order shear deformation theory,” Int. J. Mech. Sci., 78, 60-71 (2014).CrossRef J. L. Mantari and C. G. Soares, “Static response of advanced composite plates by a new non-polynomial higher-order shear deformation theory,” Int. J. Mech. Sci., 78, 60-71 (2014).CrossRef
22.
Zurück zum Zitat Z. Boukhlif, “A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation,” Steel Compos. Struct., 31, No. 5, 503-516 (2019). Z. Boukhlif, “A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation,” Steel Compos. Struct., 31, No. 5, 503-516 (2019).
23.
Zurück zum Zitat M. Nebab, S. Benguediab, H. A. Atmane, and F. Bernard, “A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations,” Geomech. Eng., 22, No. 5, 415-431 (2020). M. Nebab, S. Benguediab, H. A. Atmane, and F. Bernard, “A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations,” Geomech. Eng., 22, No. 5, 415-431 (2020).
24.
Zurück zum Zitat F. Z. Zaoui, D. Ouinas, and A. Tounsi, “New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations,” Compos. Part B, 159, 231-247 (2019).CrossRef F. Z. Zaoui, D. Ouinas, and A. Tounsi, “New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations,” Compos. Part B, 159, 231-247 (2019).CrossRef
25.
Zurück zum Zitat A. Mahmoudi, S. Benyoucef, A. Tounsi, A. Benachour, E. A. A. Bedia, and S. R. Mahmoud, “A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations,” J. Sandw. Struct. Mater., 21, No. 6, 1906-1929 (2017).CrossRef A. Mahmoudi, S. Benyoucef, A. Tounsi, A. Benachour, E. A. A. Bedia, and S. R. Mahmoud, “A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations,” J. Sandw. Struct. Mater., 21, No. 6, 1906-1929 (2017).CrossRef
26.
Zurück zum Zitat M. Abualnour, M. S. A. Houari, A. Tounsi, E. A. A. Bedia, and S. R. A. Mahmoud, “A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates,” Compos. Struct., 184, 688-697 (2018).CrossRef M. Abualnour, M. S. A. Houari, A. Tounsi, E. A. A. Bedia, and S. R. A. Mahmoud, “A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates,” Compos. Struct., 184, 688-697 (2018).CrossRef
27.
Zurück zum Zitat H. Hebali, A. Tounsi, M. S. A. Houari, A. Bessaim, and E. A. A. Bedia, “New Quasi-3D Hyperbolic Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates,” J. Eng. Mech., 140, No. 2, 374-383 (2014).CrossRef H. Hebali, A. Tounsi, M. S. A. Houari, A. Bessaim, and E. A. A. Bedia, “New Quasi-3D Hyperbolic Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates,” J. Eng. Mech., 140, No. 2, 374-383 (2014).CrossRef
28.
Zurück zum Zitat J. L. Mantari, E. V. Granados, M. A. Hinostroza, and C. G. Soares, “Modelling advanced composite plates resting on elastic foundation by using a quasi-3D hybrid type HSDT,” Compos. Struct., 118, 455-471 (2014).CrossRef J. L. Mantari, E. V. Granados, M. A. Hinostroza, and C. G. Soares, “Modelling advanced composite plates resting on elastic foundation by using a quasi-3D hybrid type HSDT,” Compos. Struct., 118, 455-471 (2014).CrossRef
29.
Zurück zum Zitat S. Bouanati, K. H. Benrahou, H. A. Atmane, S. A. Yahia, F. Bernard, A. Tounsi, and E. A. Bedia, “Investigation of wave propagation in anisotropic plates via quasi 3D HSDT,” Geomech. Eng. 18, No. 1, 85-96 (2019). S. Bouanati, K. H. Benrahou, H. A. Atmane, S. A. Yahia, F. Bernard, A. Tounsi, and E. A. Bedia, “Investigation of wave propagation in anisotropic plates via quasi 3D HSDT,” Geomech. Eng. 18, No. 1, 85-96 (2019).
30.
Zurück zum Zitat B. Adhikari and B. N. Singh, “Dynamic response of functionally graded plates resting on two-parameter-based elastic foundation model using a quasi-3D theory,” Mech. Based Des. Struct. Mach., 47, 399-429 (2019).CrossRef B. Adhikari and B. N. Singh, “Dynamic response of functionally graded plates resting on two-parameter-based elastic foundation model using a quasi-3D theory,” Mech. Based Des. Struct. Mach., 47, 399-429 (2019).CrossRef
31.
Zurück zum Zitat M. K. Singha, T. Prakash, and M. Ganapathi, “Finite element analysis of functionally graded plates under transverse load,” Finite Elem. Anal. Des., 47, No. 4, 453-460 (2011).CrossRef M. K. Singha, T. Prakash, and M. Ganapathi, “Finite element analysis of functionally graded plates under transverse load,” Finite Elem. Anal. Des., 47, No. 4, 453-460 (2011).CrossRef
32.
Zurück zum Zitat M. C. Ray and H. M. Sachade, “Finite element analysis of smart functionally graded plates,” Int. J. Solids Struct., 43, No. 18-29, 5468-5484 (2006).CrossRef M. C. Ray and H. M. Sachade, “Finite element analysis of smart functionally graded plates,” Int. J. Solids Struct., 43, No. 18-29, 5468-5484 (2006).CrossRef
33.
Zurück zum Zitat E. Orakdöğen, S. Küçükarslan, A. Sofiyev, and M. H. Omurtag, “Finite element analysis of functionally graded plates for coupling effect of extension and bending,” Mecc., 45, No. 1, 63-72 (2009).CrossRef E. Orakdöğen, S. Küçükarslan, A. Sofiyev, and M. H. Omurtag, “Finite element analysis of functionally graded plates for coupling effect of extension and bending,” Mecc., 45, No. 1, 63-72 (2009).CrossRef
34.
Zurück zum Zitat A. Shaker, W. Abdelrahman, M. Tawfik, and E. Sadek, “Stochastic Finite element analysis of the free vibration of functionally graded material plates,” Comput. Mech., 41, No. 5, 707-714 (2008).CrossRef A. Shaker, W. Abdelrahman, M. Tawfik, and E. Sadek, “Stochastic Finite element analysis of the free vibration of functionally graded material plates,” Comput. Mech., 41, No. 5, 707-714 (2008).CrossRef
35.
Zurück zum Zitat P. V. Vinh and L. Q. Huy, “Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory,” Def. Technol., 8, No. 3, 490-508 (2022).CrossRef P. V. Vinh and L. Q. Huy, “Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory,” Def. Technol., 8, No. 3, 490-508 (2022).CrossRef
36.
Zurück zum Zitat A. Tati, “Finite element analysis of thermal and mechanical buckling behaviour of functionally graded plates,” Arch. Appl. Mech., 91, No. 11, 1-17 (2021).CrossRef A. Tati, “Finite element analysis of thermal and mechanical buckling behaviour of functionally graded plates,” Arch. Appl. Mech., 91, No. 11, 1-17 (2021).CrossRef
37.
Zurück zum Zitat R. Naghdabadi and S. A. H. Kordkheili, “A finite element formulation for analysis of functionally graded plates and shells,” Arch. Appl. Mech., 74, No. 5, 375-386 (2005).CrossRef R. Naghdabadi and S. A. H. Kordkheili, “A finite element formulation for analysis of functionally graded plates and shells,” Arch. Appl. Mech., 74, No. 5, 375-386 (2005).CrossRef
38.
Zurück zum Zitat M. J. Pindera and P. Dunn, “Evaluation of the higher-order theory for functionally graded materials via the finite-element method,” Compos. Part B, 28, No. 1-2,109-119 (1997).CrossRef M. J. Pindera and P. Dunn, “Evaluation of the higher-order theory for functionally graded materials via the finite-element method,” Compos. Part B, 28, No. 1-2,109-119 (1997).CrossRef
39.
Zurück zum Zitat I. Ramu and S. C. Mohanty, “Modal Analysis of Functionally Graded Material Plates Using Finite Element Method,” Procedia Mater. Sci., 6, 460-467 (2014).CrossRef I. Ramu and S. C. Mohanty, “Modal Analysis of Functionally Graded Material Plates Using Finite Element Method,” Procedia Mater. Sci., 6, 460-467 (2014).CrossRef
40.
Zurück zum Zitat M. N. A. G. Taj and A. Chakrabarti, “Buckling analysis of functionally graded skew plates: An efficient finite element approach,” Int. J. Appl. Mech., 5, No. 04, (2013). M. N. A. G. Taj and A. Chakrabarti, “Buckling analysis of functionally graded skew plates: An efficient finite element approach,” Int. J. Appl. Mech., 5, No. 04, (2013).
41.
Zurück zum Zitat A. Mahi and A. Tounsi, “A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates,” Appl. Math. Model., 39, No. 9, 2489-2508 (2015).CrossRef A. Mahi and A. Tounsi, “A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates,” Appl. Math. Model., 39, No. 9, 2489-2508 (2015).CrossRef
42.
Zurück zum Zitat A. Benahmed, M. S. A. Houari, S. Benyoucef, K. Belakhdar, and A. Tounsi, “A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation,” Geomech. Eng., 12, No. 1, 9-34 (2017).CrossRef A. Benahmed, M. S. A. Houari, S. Benyoucef, K. Belakhdar, and A. Tounsi, “A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation,” Geomech. Eng., 12, No. 1, 9-34 (2017).CrossRef
43.
Zurück zum Zitat A. Gupta, M. Talha, and V. K. Chaudhari, “Natural frequency of functionally graded plates resting on elastic foundation using finite element method,” Procedia Technol., 23, 163-170 (2016).CrossRef A. Gupta, M. Talha, and V. K. Chaudhari, “Natural frequency of functionally graded plates resting on elastic foundation using finite element method,” Procedia Technol., 23, 163-170 (2016).CrossRef
44.
Zurück zum Zitat T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571-574 (1973).CrossRef T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571-574 (1973).CrossRef
45.
Zurück zum Zitat P. V. Vinh, N. T. Dung, N. C. Tho, D. V. Thom, and L. K. Hoa, “Modified single variable shear deformation plate theory for free vibration analysis of rectangular FGM plates,” Structures, 29, 1435-1444 (2021).CrossRef P. V. Vinh, N. T. Dung, N. C. Tho, D. V. Thom, and L. K. Hoa, “Modified single variable shear deformation plate theory for free vibration analysis of rectangular FGM plates,” Structures, 29, 1435-1444 (2021).CrossRef
46.
Zurück zum Zitat S. Yin, J. S. Hale, T. Yu, T. Q. Bui, and S. P. A. Bordas, “Isogeometric locking-free plate element: A simple first-order shear deformation theory for functionally graded plates,” Compos. Struct., 118, 121-138 (2014).CrossRef S. Yin, J. S. Hale, T. Yu, T. Q. Bui, and S. P. A. Bordas, “Isogeometric locking-free plate element: A simple first-order shear deformation theory for functionally graded plates,” Compos. Struct., 118, 121-138 (2014).CrossRef
47.
Zurück zum Zitat T. V. Vu, N. H. Nguyen, A. Khosravifard, M. R. Hematiyan, S. Tanaka, and T. Q. Bui, “A simple FSDT-based meshfree method for analysis of functionally graded plates,” Eng. Anal. Bound. Elem., 79, 1-12 (2017).CrossRef T. V. Vu, N. H. Nguyen, A. Khosravifard, M. R. Hematiyan, S. Tanaka, and T. Q. Bui, “A simple FSDT-based meshfree method for analysis of functionally graded plates,” Eng. Anal. Bound. Elem., 79, 1-12 (2017).CrossRef
48.
Zurück zum Zitat H. T. Thai and D. H. Choi, “Finite element formulation of various four unknown shear deformation theories for functionally graded plates,” Finite Elem. Anal. Des., 75, 50-61 (2013).CrossRef H. T. Thai and D. H. Choi, “Finite element formulation of various four unknown shear deformation theories for functionally graded plates,” Finite Elem. Anal. Des., 75, 50-61 (2013).CrossRef
49.
Zurück zum Zitat M. Talha and B. N. Singh, “Static response and free vibration analysis of FGM plates using higher order shear deformation theory,” Appl. Math. Model., 34, No. 12, 3991-4011 (2010).CrossRef M. Talha and B. N. Singh, “Static response and free vibration analysis of FGM plates using higher order shear deformation theory,” Appl. Math. Model., 34, No. 12, 3991-4011 (2010).CrossRef
50.
Zurück zum Zitat H. Nguyen-Xuan, C. H. Thai, and T. Nguyen-Thoi, “Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory,” Compos., Part B, 55, 558-574 (2013).CrossRef H. Nguyen-Xuan, C. H. Thai, and T. Nguyen-Thoi, “Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory,” Compos., Part B, 55, 558-574 (2013).CrossRef
51.
Zurück zum Zitat C. H. Thai, A. J. M. Ferreira, S. P. A. Bordas, T. Rabczuk, and H. Nguyen-Xuan, “Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory,” Eur. J. Mech. - A/Solids, 43, 89-108 (2014).CrossRef C. H. Thai, A. J. M. Ferreira, S. P. A. Bordas, T. Rabczuk, and H. Nguyen-Xuan, “Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory,” Eur. J. Mech. - A/Solids, 43, 89-108 (2014).CrossRef
52.
Zurück zum Zitat H. Nguyen-Xuan, L. V. Tran, C. H. Thai, S. Kulasegaram, and S. P. A. Bordas, “Isogeometric analysis of functionally graded plates using a refined plate theory,” Compos., Part B, 64, 222-234 (2014).CrossRef H. Nguyen-Xuan, L. V. Tran, C. H. Thai, S. Kulasegaram, and S. P. A. Bordas, “Isogeometric analysis of functionally graded plates using a refined plate theory,” Compos., Part B, 64, 222-234 (2014).CrossRef
53.
Zurück zum Zitat Z. Liu, C. Wang, G. Duan, and J. Tan, “A new refined plate theory with isogeometric approach for the static and buckling analysis of functionally graded plates,” Int. J. Mech. Sci., 161, 105036 (2019).CrossRef Z. Liu, C. Wang, G. Duan, and J. Tan, “A new refined plate theory with isogeometric approach for the static and buckling analysis of functionally graded plates,” Int. J. Mech. Sci., 161, 105036 (2019).CrossRef
54.
Zurück zum Zitat J. Rouzegar and R. A. Sharifpoor, “Finite element formulations for buckling analysis of isotropic and orthotropic plates using two-variable refined plate theory,” Iran. J. Sci. Technol. Trans. Mech. Eng., 41, No. 3, 177-187 (2016).CrossRef J. Rouzegar and R. A. Sharifpoor, “Finite element formulations for buckling analysis of isotropic and orthotropic plates using two-variable refined plate theory,” Iran. J. Sci. Technol. Trans. Mech. Eng., 41, No. 3, 177-187 (2016).CrossRef
55.
Zurück zum Zitat S. E. Kim, H. T. Thai, and J. Lee, “Buckling analysis of plates using the two variable refined plate theory,” Thin-Walled Struct., 47, No. 4, 455-462 (2009).CrossRef S. E. Kim, H. T. Thai, and J. Lee, “Buckling analysis of plates using the two variable refined plate theory,” Thin-Walled Struct., 47, No. 4, 455-462 (2009).CrossRef
56.
Zurück zum Zitat H. T. Thai and D. H. Choi, “An efficient and simple refined theory for buckling analysis of functionally graded plates,” Appl. Math. Model., 36, No. 3, 1008-1022 (2012).CrossRef H. T. Thai and D. H. Choi, “An efficient and simple refined theory for buckling analysis of functionally graded plates,” Appl. Math. Model., 36, No. 3, 1008-1022 (2012).CrossRef
Metadaten
Titel
Vibration and the Buckling Response of Functionally Graded Plates According to a Refined Hyperbolic Shear Deformation Theory
verfasst von
J. Singh
A. Kumar
Publikationsdatum
04.09.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 4/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10127-5

Weitere Artikel der Ausgabe 4/2023

Mechanics of Composite Materials 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.