Skip to main content
Erschienen in: Microsystem Technologies 10/2017

11.01.2017 | Technical Paper

Vibrations of fluid conveying microbeams under non-ideal boundary conditions

verfasst von: Duygu Atcı, Süleyman Murat Bağdatlı

Erschienen in: Microsystem Technologies | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study aimed to present the effects of non-ideal boundary conditions (BCs) on fundamental parametric resonance behavior of fluid conveying clamped microbeams. Non-ideal BCs are modelled by using the weighting factor (k). Equations of motion are obtained by using the Hamilton’s Principle. A perturbation technique, method of multiple scales, is applied to solve the non-linear equations of motions. In this study, frequency-response curves of fundamental parametric resonance are plotted and the effects of non-ideal BCs are shown. Besides, instability areas of microbeams under ideal and non-ideal BCs are investigated by considering different system parameters. Numerical results show that instability areas significantly changed by the effect of non-ideal BCs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akgöz B, Civalek Ö (2012) Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J Vib Control 0(0):1–11MATH Akgöz B, Civalek Ö (2012) Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J Vib Control 0(0):1–11MATH
Zurück zum Zitat Akgöz B, Civalek Ö (2013) Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory. Compos Struct 98:314–322CrossRef Akgöz B, Civalek Ö (2013) Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory. Compos Struct 98:314–322CrossRef
Zurück zum Zitat Akgöz B, Civalek Ö (2014) A new trigonometric beam model for strain gradient microbeams. Int J Mech Sci 81:88–94CrossRef Akgöz B, Civalek Ö (2014) A new trigonometric beam model for strain gradient microbeams. Int J Mech Sci 81:88–94CrossRef
Zurück zum Zitat Bağdatlı SM, Uslu B (2015) Free vibration analysis of axially moving beam under non-ideal conditions. Struct Eng Mech 54(3):597–605CrossRef Bağdatlı SM, Uslu B (2015) Free vibration analysis of axially moving beam under non-ideal conditions. Struct Eng Mech 54(3):597–605CrossRef
Zurück zum Zitat Bağdatlı SM, Özkaya E, Öz HR (2013) Dynamics of axially accelerating beams with multiple supports. Nonlinear Dyn 74(1–2):237–255MathSciNetMATH Bağdatlı SM, Özkaya E, Öz HR (2013) Dynamics of axially accelerating beams with multiple supports. Nonlinear Dyn 74(1–2):237–255MathSciNetMATH
Zurück zum Zitat Baohui L, Hangshan G, Yongshou L, Zhufeng Y (2012) Free vibration analysis of micro pipe conveying fluid by wave method. Results Phys 2:104–109CrossRef Baohui L, Hangshan G, Yongshou L, Zhufeng Y (2012) Free vibration analysis of micro pipe conveying fluid by wave method. Results Phys 2:104–109CrossRef
Zurück zum Zitat Chakraborty G, Mallik AK, Hatwal H (1998) Non-linear vibration of a travelling beam. Int J Nonlinear Mech 34:655–670CrossRefMATH Chakraborty G, Mallik AK, Hatwal H (1998) Non-linear vibration of a travelling beam. Int J Nonlinear Mech 34:655–670CrossRefMATH
Zurück zum Zitat Chong ACM, Lam DCC (1999) Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res 14:4103–4110CrossRef Chong ACM, Lam DCC (1999) Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res 14:4103–4110CrossRef
Zurück zum Zitat Dai HL, Wang YK, Wang L (2015a) Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int J Eng Sci 94:103–112MathSciNetCrossRef Dai HL, Wang YK, Wang L (2015a) Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int J Eng Sci 94:103–112MathSciNetCrossRef
Zurück zum Zitat Dai HL, Wang L, Ni Q (2015b) Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid. Microfluid Nanofluid 18:49–55CrossRef Dai HL, Wang L, Ni Q (2015b) Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid. Microfluid Nanofluid 18:49–55CrossRef
Zurück zum Zitat Ekici HO, Boyacı H (2007) Effects of non-ideal boundary conditions on vibrations of micro beams. J Vib Control 13(9–10):1369–1378MathSciNetCrossRefMATH Ekici HO, Boyacı H (2007) Effects of non-ideal boundary conditions on vibrations of micro beams. J Vib Control 13(9–10):1369–1378MathSciNetCrossRefMATH
Zurück zum Zitat Ellis SRW, Smith CW (1968) A thin plate analysis and experimental evaluation of couple stress effects. Exp Mech 7:372–380CrossRef Ellis SRW, Smith CW (1968) A thin plate analysis and experimental evaluation of couple stress effects. Exp Mech 7:372–380CrossRef
Zurück zum Zitat Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487CrossRef Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487CrossRef
Zurück zum Zitat Griffiths DJ (1981) Introduction to electrodynamics. Prentice Hall, Englewood Cliffs Griffiths DJ (1981) Introduction to electrodynamics. Prentice Hall, Englewood Cliffs
Zurück zum Zitat Ibrahim RA (2010) Overview of mechanics of pipes conveying fluids-Part I: fundamental studies. J Pressure Vessel Technol 132:034001CrossRef Ibrahim RA (2010) Overview of mechanics of pipes conveying fluids-Part I: fundamental studies. J Pressure Vessel Technol 132:034001CrossRef
Zurück zum Zitat Ibrahim RA (2011) Mechanics of pipes conveying fluids-Part II: applications and fluid elastic problems. J Pressure Vessel Technol 133:024001CrossRef Ibrahim RA (2011) Mechanics of pipes conveying fluids-Part II: applications and fluid elastic problems. J Pressure Vessel Technol 133:024001CrossRef
Zurück zum Zitat Kahrobaiyan MH, Asghari M, Hoore M, Ahmadian T (2012) Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory. J Vib Control 1(1):1–16MathSciNetMATH Kahrobaiyan MH, Asghari M, Hoore M, Ahmadian T (2012) Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory. J Vib Control 1(1):1–16MathSciNetMATH
Zurück zum Zitat Kesimli A, Özkaya E, Bağdatlı SM (2015) Nonlinear vibrations of spring-supported axially moving string. Nonlinear Dyn 81:1523–1534MathSciNetCrossRefMATH Kesimli A, Özkaya E, Bağdatlı SM (2015) Nonlinear vibrations of spring-supported axially moving string. Nonlinear Dyn 81:1523–1534MathSciNetCrossRefMATH
Zurück zum Zitat Khajehpour S, Azadi V (2015) Vibration suppression of a rotating flexible cantilever pipe conveying fluid using piezoelectric layers. Lat Am J Solids Struct 12:1042–1060CrossRef Khajehpour S, Azadi V (2015) Vibration suppression of a rotating flexible cantilever pipe conveying fluid using piezoelectric layers. Lat Am J Solids Struct 12:1042–1060CrossRef
Zurück zum Zitat Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508CrossRefMATH Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508CrossRefMATH
Zurück zum Zitat Lee J (2013) Free vibration analysis of beams with non-ideal clamped boundary conditions. J Mech Sci Technol 27(2):297–303CrossRef Lee J (2013) Free vibration analysis of beams with non-ideal clamped boundary conditions. J Mech Sci Technol 27(2):297–303CrossRef
Zurück zum Zitat Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10:853–863CrossRef Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10:853–863CrossRef
Zurück zum Zitat McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060–1067CrossRef McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060–1067CrossRef
Zurück zum Zitat Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New YorkMATH Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New YorkMATH
Zurück zum Zitat Ni Q, Zhang ZL, Wang L (2011) Application of the differential transformation method to vibration analysis of pipes conveying fluid. Appl Math Comput 217:7028–7038MathSciNetMATH Ni Q, Zhang ZL, Wang L (2011) Application of the differential transformation method to vibration analysis of pipes conveying fluid. Appl Math Comput 217:7028–7038MathSciNetMATH
Zurück zum Zitat Öz HR (2001) Non-linear vibrations and stability analysis of tensioned pipes conveying fluid with variable velocity. Int J Non-Linear Mech 36:1031–1039CrossRefMATH Öz HR (2001) Non-linear vibrations and stability analysis of tensioned pipes conveying fluid with variable velocity. Int J Non-Linear Mech 36:1031–1039CrossRefMATH
Zurück zum Zitat Öz HR, Evrensel CA (2002) Natural frequencies of tensioned pipes conveying fluid and carrying a concentrated mass. J Sound Vib 250(2):368–377CrossRef Öz HR, Evrensel CA (2002) Natural frequencies of tensioned pipes conveying fluid and carrying a concentrated mass. J Sound Vib 250(2):368–377CrossRef
Zurück zum Zitat Öz HR, Pakdemirli M, Boyacı H (2001) Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. Int J Non-Linear Mech 36:107–115CrossRefMATH Öz HR, Pakdemirli M, Boyacı H (2001) Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. Int J Non-Linear Mech 36:107–115CrossRefMATH
Zurück zum Zitat Paidoussis MP (1998) Fluid-structure interactions: slender structures and axial flow, vol 1. Elsevier Academic Press, London Paidoussis MP (1998) Fluid-structure interactions: slender structures and axial flow, vol 1. Elsevier Academic Press, London
Zurück zum Zitat Paidoussis MP (2003) Fluid-structure interactions: slender structures and axial flow, vol 2. Elsevier Academic Press, London Paidoussis MP (2003) Fluid-structure interactions: slender structures and axial flow, vol 2. Elsevier Academic Press, London
Zurück zum Zitat Paidoussis MP, Li GX (1993) Pipes conveying fluid: a model dynamical problem. J Fluids Struct 7:137–204CrossRef Paidoussis MP, Li GX (1993) Pipes conveying fluid: a model dynamical problem. J Fluids Struct 7:137–204CrossRef
Zurück zum Zitat Paidoussis MP, Grinevich E, Adamovic D, Semler C (2002) Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part I Physical Dynamics. J Fluids Struct 16:691–713CrossRef Paidoussis MP, Grinevich E, Adamovic D, Semler C (2002) Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part I Physical Dynamics. J Fluids Struct 16:691–713CrossRef
Zurück zum Zitat Paidoussis MP, Semler C, Wadham-Gagnon M, Saaid S (2007) Dynamics of cantilevered pipes conveying fluid. Part II Dynamics of system with intermediate spring support. J Fluids Struct 23:569–587CrossRef Paidoussis MP, Semler C, Wadham-Gagnon M, Saaid S (2007) Dynamics of cantilevered pipes conveying fluid. Part II Dynamics of system with intermediate spring support. J Fluids Struct 23:569–587CrossRef
Zurück zum Zitat Pakdemirli M, Boyacı H (2001) Vibrations of a stretched beam with non-ideal boundary conditions. Math Comput Appl 6(3):217–220MATH Pakdemirli M, Boyacı H (2001) Vibrations of a stretched beam with non-ideal boundary conditions. Math Comput Appl 6(3):217–220MATH
Zurück zum Zitat Pakdemirli M, Boyacı H (2002) Effect of non-ideal boundary conditions on the vibrations of continuous systems. J Sound Vib 249(4):815–823CrossRef Pakdemirli M, Boyacı H (2002) Effect of non-ideal boundary conditions on the vibrations of continuous systems. J Sound Vib 249(4):815–823CrossRef
Zurück zum Zitat Pakdemirli M, Boyacı H (2003) Non-linear vibrations of a simple-simple beam with a non-ideal support in between. J Sound Vib 268:331–341CrossRefMATH Pakdemirli M, Boyacı H (2003) Non-linear vibrations of a simple-simple beam with a non-ideal support in between. J Sound Vib 268:331–341CrossRefMATH
Zurück zum Zitat Park SK, Gao X-L (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromech Microeng 16:2355–2359CrossRef Park SK, Gao X-L (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromech Microeng 16:2355–2359CrossRef
Zurück zum Zitat Stolken JS, Evans AG (1998) Microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115CrossRef Stolken JS, Evans AG (1998) Microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115CrossRef
Zurück zum Zitat Tang M, Ni Q, Wang L, Luo Y, Wang Y (2014) Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory. Int J Eng Sci 85:20–30CrossRef Tang M, Ni Q, Wang L, Luo Y, Wang Y (2014) Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory. Int J Eng Sci 85:20–30CrossRef
Zurück zum Zitat Thurman AL, Mote CD (1969) Free, periodic, nonlinear oscillations of an axially moving strip. J Appl Mech 36:3CrossRefMATH Thurman AL, Mote CD (1969) Free, periodic, nonlinear oscillations of an axially moving strip. J Appl Mech 36:3CrossRefMATH
Zurück zum Zitat Wang L (2010) Size-dependent vibration characteristics of fluid-conveying micro tubes. J Fluids Struct 26:675–684CrossRef Wang L (2010) Size-dependent vibration characteristics of fluid-conveying micro tubes. J Fluids Struct 26:675–684CrossRef
Zurück zum Zitat Wang L, Gan J, Ni Q (2013a) Natural frequency analysis of fluid-conveying pipes in the ADINA system. J Phys Conf Ser 448:012014CrossRef Wang L, Gan J, Ni Q (2013a) Natural frequency analysis of fluid-conveying pipes in the ADINA system. J Phys Conf Ser 448:012014CrossRef
Zurück zum Zitat Wang L, Liu HT, Ni Q, Wu Y (2013b) Flexural vibrations of micro scale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. Int J Eng Sci 71:92–101CrossRef Wang L, Liu HT, Ni Q, Wu Y (2013b) Flexural vibrations of micro scale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. Int J Eng Sci 71:92–101CrossRef
Zurück zum Zitat Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743CrossRefMATH Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743CrossRefMATH
Metadaten
Titel
Vibrations of fluid conveying microbeams under non-ideal boundary conditions
verfasst von
Duygu Atcı
Süleyman Murat Bağdatlı
Publikationsdatum
11.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3255-y

Weitere Artikel der Ausgabe 10/2017

Microsystem Technologies 10/2017 Zur Ausgabe

Neuer Inhalt