Skip to main content
Erschienen in: Computational Mechanics 5/2019

10.05.2019 | Original Paper

Virtual elements for finite thermo-plasticity problems

verfasst von: Fadi Aldakheel, Blaž Hudobivnik, Peter Wriggers

Erschienen in: Computational Mechanics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper outlines a multi-dimensional virtual element scheme for the coupled thermo-mechanical response of finite strain plasticity problems. The virtual element method (VEM) has been developed over the last decade and applied to problems in elasticity for small strains and other areas in the linear range. Enlargements of VEM to problems of compressible and incompressible nonlinear elasticity and finite plasticity have been reported in the last years. This work is further extending VEM to problems of 2D and 3D finite strain thermo-plasticity. Several numerical results substantiate our developments. For comparison purposes, results of different finite element discretization schemes are demonstrated as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Argyris J, Doltsinis J (1981) On the natural formulation and analysis of large deformation coupled thermomechanical problems. Comput Methods Appl Mech Eng 25:195–253MathSciNetMATH Argyris J, Doltsinis J (1981) On the natural formulation and analysis of large deformation coupled thermomechanical problems. Comput Methods Appl Mech Eng 25:195–253MathSciNetMATH
2.
Zurück zum Zitat Argyris J, Doltsinis J (1982) Thermomechanical response of solids at high strains—natural approach. Comput Methods Appl Mech Eng 32:3–57MathSciNetMATH Argyris J, Doltsinis J (1982) Thermomechanical response of solids at high strains—natural approach. Comput Methods Appl Mech Eng 32:3–57MathSciNetMATH
3.
Zurück zum Zitat Simó J, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98:41–104MATH Simó J, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98:41–104MATH
4.
Zurück zum Zitat Wriggers P, Miehe C, Kleiber M, Simó J (1992) A thermomechanical approach to the necking problem. Int J Numer Methods Eng 33:869–883MATH Wriggers P, Miehe C, Kleiber M, Simó J (1992) A thermomechanical approach to the necking problem. Int J Numer Methods Eng 33:869–883MATH
5.
Zurück zum Zitat Stainier L, Cuitino A, Ortiz M (2002) A micromechanical model of hardening, rate sensitivity and thermal softening in bcc single crystals. J Mech Phys Solids 50(7):1511–1545MATH Stainier L, Cuitino A, Ortiz M (2002) A micromechanical model of hardening, rate sensitivity and thermal softening in bcc single crystals. J Mech Phys Solids 50(7):1511–1545MATH
6.
Zurück zum Zitat Chapuis A, Driver JH (2011) Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Materialia 59(5):1986–1994 Chapuis A, Driver JH (2011) Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Materialia 59(5):1986–1994
7.
Zurück zum Zitat Cereceda D, Diehl M, Roters F, Raabe D, Perlado JM, Marian J (2016) Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. Int J Plasticity 78:242–265 Cereceda D, Diehl M, Roters F, Raabe D, Perlado JM, Marian J (2016) Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. Int J Plasticity 78:242–265
8.
Zurück zum Zitat Lion A (2000) Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int J Plasticity 16(5):469–494MATH Lion A (2000) Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int J Plasticity 16(5):469–494MATH
9.
Zurück zum Zitat Anand L, Ames NM, Srivastava V, Chester SA (2009) A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part i: formulation. Int J Plasticity 25:1474–1494MATH Anand L, Ames NM, Srivastava V, Chester SA (2009) A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part i: formulation. Int J Plasticity 25:1474–1494MATH
10.
Zurück zum Zitat Miehe C, Méndez Diez J, Göktepe S, Schänzel L (2011) Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory. Int J Solids Struct 48:1799–1817 Miehe C, Méndez Diez J, Göktepe S, Schänzel L (2011) Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory. Int J Solids Struct 48:1799–1817
11.
Zurück zum Zitat Canadija M, Mosler J (2011) On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int J Solids Struct 48:1120–1129MATH Canadija M, Mosler J (2011) On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int J Solids Struct 48:1120–1129MATH
12.
Zurück zum Zitat Bartels A, Bartel T, Canadija M, Mosler J (2015) On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials. J Mech Phys Solids 82:218–234MathSciNet Bartels A, Bartel T, Canadija M, Mosler J (2015) On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials. J Mech Phys Solids 82:218–234MathSciNet
13.
Zurück zum Zitat Yang Q, Stainier L, Ortiz M (2006) A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J Mech Phys Solids 54:401–424MathSciNetMATH Yang Q, Stainier L, Ortiz M (2006) A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J Mech Phys Solids 54:401–424MathSciNetMATH
14.
Zurück zum Zitat Stainier L, Ortiz M (2010) Study and validation of thermomechanical coupling in finite strain visco-plasticity. Int J Solids Struct 47:704–715MATH Stainier L, Ortiz M (2010) Study and validation of thermomechanical coupling in finite strain visco-plasticity. Int J Solids Struct 47:704–715MATH
15.
Zurück zum Zitat Wriggers P (2008) Nonlinear finite elements. Springer, BerlinMATH Wriggers P (2008) Nonlinear finite elements. Springer, BerlinMATH
16.
Zurück zum Zitat Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1, 5th edn. Butterworth-Heinemann, OxfordMATH Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1, 5th edn. Butterworth-Heinemann, OxfordMATH
17.
Zurück zum Zitat Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195MathSciNetMATH Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195MathSciNetMATH
18.
Zurück zum Zitat Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, HobokenMATH Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, HobokenMATH
19.
Zurück zum Zitat Beirão Da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(1):199–214MathSciNetMATH Beirão Da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(1):199–214MathSciNetMATH
20.
Zurück zum Zitat Beirão Da Veiga L, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812MathSciNetMATH Beirão Da Veiga L, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812MathSciNetMATH
21.
Zurück zum Zitat Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160MathSciNetMATH Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160MathSciNetMATH
22.
Zurück zum Zitat Artioli E, Beirão da Veiga L, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput Mech 60:355–377MathSciNetMATH Artioli E, Beirão da Veiga L, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput Mech 60:355–377MathSciNetMATH
23.
Zurück zum Zitat Wriggers P, Rust WT, Reddy BD (2016) A virtual element method for contact. Comput Mech 58:1039–1050MathSciNetMATH Wriggers P, Rust WT, Reddy BD (2016) A virtual element method for contact. Comput Mech 58:1039–1050MathSciNetMATH
26.
Zurück zum Zitat Wriggers P, Hudobivnik B, Korelc J (2018) Efficient low order virtual elements for anisotropic materials at finite strains. Springer, Cham, pp 417–434 Wriggers P, Hudobivnik B, Korelc J (2018) Efficient low order virtual elements for anisotropic materials at finite strains. Springer, Cham, pp 417–434
27.
Zurück zum Zitat Wriggers P, Hudobivnik B, Schröder J (2018) Finite and virtual element formulations for large strain anisotropic material with inextensive fibers. Springer, Cham, pp 205–231 Wriggers P, Hudobivnik B, Schröder J (2018) Finite and virtual element formulations for large strain anisotropic material with inextensive fibers. Springer, Cham, pp 205–231
29.
Zurück zum Zitat Bellis MLD, Wriggers P, Hudobivnik B, Zavarise G (2018) Virtual element formulation for isotropic damage. Finite Elem Anal Des 144:38–48MathSciNet Bellis MLD, Wriggers P, Hudobivnik B, Zavarise G (2018) Virtual element formulation for isotropic damage. Finite Elem Anal Des 144:38–48MathSciNet
30.
Zurück zum Zitat Taylor RL, Artioli E (2018) VEM for inelastic solids. Springer, Cham, pp 381–394 Taylor RL, Artioli E (2018) VEM for inelastic solids. Springer, Cham, pp 381–394
32.
Zurück zum Zitat Wriggers P, Reddy BD, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60(2):253–268MathSciNetMATH Wriggers P, Reddy BD, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60(2):253–268MathSciNetMATH
33.
Zurück zum Zitat Hussein A, Aldakheel F, Hudobivnik B, Wriggers P, Guidault P-A, Allix O (2019) A computational framework for brittle crack-propagation based on efficient virtual element method. Finite Elem Anal Des 159:15–32MathSciNet Hussein A, Aldakheel F, Hudobivnik B, Wriggers P, Guidault P-A, Allix O (2019) A computational framework for brittle crack-propagation based on efficient virtual element method. Finite Elem Anal Des 159:15–32MathSciNet
34.
Zurück zum Zitat Aldakheel F, Hudobivnik B, Hussein A, Wriggers P (2018) Phase-field modeling of brittle fracture using an efficient virtual element scheme. Comput Methods Appl Mech Eng 341:443–466MathSciNet Aldakheel F, Hudobivnik B, Hussein A, Wriggers P (2018) Phase-field modeling of brittle fracture using an efficient virtual element scheme. Comput Methods Appl Mech Eng 341:443–466MathSciNet
36.
Zurück zum Zitat Aldakheel F (2016) Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture. PhD thesis, Institute of Applied Mechanics (CE), Chair I, University of Stuttgart. https://doi.org/10.18419/opus-8803 Aldakheel F (2016) Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture. PhD thesis, Institute of Applied Mechanics (CE), Chair I, University of Stuttgart. https://​doi.​org/​10.​18419/​opus-8803
37.
Zurück zum Zitat Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, BerlinMATH Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, BerlinMATH
38.
Zurück zum Zitat Aldakheel F, Miehe C (2017) Coupled thermomechanical response of gradient plasticity. Int J Plasticity 91:1–24 Aldakheel F, Miehe C (2017) Coupled thermomechanical response of gradient plasticity. Int J Plasticity 91:1–24
39.
Zurück zum Zitat Aldakheel F (2017) Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the logarithmic strain space. Contin Mech Thermodyn 29(6):1207–1217MathSciNetMATH Aldakheel F (2017) Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the logarithmic strain space. Contin Mech Thermodyn 29(6):1207–1217MathSciNetMATH
40.
Zurück zum Zitat Korelc J, Stupkiewicz S (2014) Closed-form matrix exponential and its application in finite-strain plasticity. Int J Numer Methods Eng 98:960–987MathSciNetMATH Korelc J, Stupkiewicz S (2014) Closed-form matrix exponential and its application in finite-strain plasticity. Int J Numer Methods Eng 98:960–987MathSciNetMATH
41.
Zurück zum Zitat Wriggers P, Reddy B, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60:253–268MathSciNetMATH Wriggers P, Reddy B, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60:253–268MathSciNetMATH
42.
Zurück zum Zitat Wriggers P, Hudobivnik B, Schröder J (2017) Finite and virtual element formulations for large strain anisotropic material with inextensive fibers. In: Soric J, Wriggers P (eds) Multiscale modeling of heterogeneous structures. Springer, Cham Wriggers P, Hudobivnik B, Schröder J (2017) Finite and virtual element formulations for large strain anisotropic material with inextensive fibers. In: Soric J, Wriggers P (eds) Multiscale modeling of heterogeneous structures. Springer, Cham
43.
Zurück zum Zitat Simó JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: Computational aspects. Comput Methods Appl Mech Eng 68:1–31MATH Simó JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: Computational aspects. Comput Methods Appl Mech Eng 68:1–31MATH
44.
Zurück zum Zitat Hallquist JO (1984) Nike 2D: An implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solids. Rept. UCRL-52678, Lawrence Livermore National Laboratory, University of California, Livermore, CA Hallquist JO (1984) Nike 2D: An implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solids. Rept. UCRL-52678, Lawrence Livermore National Laboratory, University of California, Livermore, CA
45.
Zurück zum Zitat Simó JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208MathSciNetMATH Simó JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208MathSciNetMATH
46.
Zurück zum Zitat Miehe C, Aldakheel F, Mauthe S (2013) Mixed variational principles and robust finite element implementations of gradient plasticity at small strains. Int J Numer Methods Eng 94:1037–1074MathSciNetMATH Miehe C, Aldakheel F, Mauthe S (2013) Mixed variational principles and robust finite element implementations of gradient plasticity at small strains. Int J Numer Methods Eng 94:1037–1074MathSciNetMATH
48.
Zurück zum Zitat Wriggers P, Korelc J (1996) On enhanced strain methods for small and finite deformations of solids. Comput Mech 18:413–428MATH Wriggers P, Korelc J (1996) On enhanced strain methods for small and finite deformations of solids. Comput Mech 18:413–428MATH
49.
Zurück zum Zitat Korelc J, Solinc U, Wriggers P (2010) An improved EAS brick element for finite deformation. Comput Mech 46:641–659MATH Korelc J, Solinc U, Wriggers P (2010) An improved EAS brick element for finite deformation. Comput Mech 46:641–659MATH
50.
Zurück zum Zitat Wriggers P, Reese S (1996) A note on enhanced strain methods for large deformations. Comput Methods Appl Mech Eng 135:201–209MATH Wriggers P, Reese S (1996) A note on enhanced strain methods for large deformations. Comput Methods Appl Mech Eng 135:201–209MATH
51.
Zurück zum Zitat Aldakheel F, Mauthe S, Miehe C (2014) Towards phase field modeling of ductile fracture in gradient-extended elastic-plastic solids. Proc Appl Math Mech 14:411–412 Aldakheel F, Mauthe S, Miehe C (2014) Towards phase field modeling of ductile fracture in gradient-extended elastic-plastic solids. Proc Appl Math Mech 14:411–412
52.
Zurück zum Zitat Miehe C, Welschinger F, Aldakheel F (2014) Variational gradient plasticity at finite strains. Part II: local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Comput Methods Appl Mech Eng 268:704–734MathSciNetMATH Miehe C, Welschinger F, Aldakheel F (2014) Variational gradient plasticity at finite strains. Part II: local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Comput Methods Appl Mech Eng 268:704–734MathSciNetMATH
54.
Zurück zum Zitat Soyarslan C, Bargmann S (2016) Thermomechanical formulation of ductile damage coupled to nonlinear isotropic hardening and multiplicative viscoplasticity. J Mech Phys Solids 91:334–358MathSciNet Soyarslan C, Bargmann S (2016) Thermomechanical formulation of ductile damage coupled to nonlinear isotropic hardening and multiplicative viscoplasticity. J Mech Phys Solids 91:334–358MathSciNet
55.
Zurück zum Zitat Aldakheel F, Wriggers P, Miehe C (2018) A modified gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62(4):815–833MathSciNetMATH Aldakheel F, Wriggers P, Miehe C (2018) A modified gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62(4):815–833MathSciNetMATH
56.
Zurück zum Zitat Voyiadjis Z, Faghihi D (2012) Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales. Int J Plasticity 30–31:218–247 Voyiadjis Z, Faghihi D (2012) Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales. Int J Plasticity 30–31:218–247
57.
Zurück zum Zitat Fohrmeister V, Bartels A, Mosler J (2018) Variational updates for thermomechanically coupled gradient-enhanced elastoplasticity—implementation based on hyper-dual numbers. Comput Methods Appl Mech Eng 339:239–261MathSciNet Fohrmeister V, Bartels A, Mosler J (2018) Variational updates for thermomechanically coupled gradient-enhanced elastoplasticity—implementation based on hyper-dual numbers. Comput Methods Appl Mech Eng 339:239–261MathSciNet
Metadaten
Titel
Virtual elements for finite thermo-plasticity problems
verfasst von
Fadi Aldakheel
Blaž Hudobivnik
Peter Wriggers
Publikationsdatum
10.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01714-2

Weitere Artikel der Ausgabe 5/2019

Computational Mechanics 5/2019 Zur Ausgabe

Neuer Inhalt