Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2020

26.10.2020

Warm Tensile Deformation and Fracture Behavior of AZ31 Magnesium Alloy Sheets Processed by Constrained Groove Pressing

verfasst von: Zongshen Wang, Kangning Wang, Xiebin Wang, Tao Wang, Lihua Zhu, Yanjin Guan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Constrained groove pressing (CGP), as a promising severe plastic deformation method suitable for processing sheet metals, was applied to AZ31 magnesium alloy sheets, and ultra-fine grained structure was achieved after two passes of CGP at 473 K. A bimodal structure was also developed due to partial dynamic recrystallization (DRX) and deformation homogeneity. Tensile tests at temperatures from room temperature to 523 K and strain rates from 1 × 10−4 to 1 × 10−1 s−1 were conducted to the processed alloy sheets, and their tensile deformation and fracture behavior were investigated in this work. The maximum elongation to failure of 38.7% is achieved at 1 × 10−4 s−1 and 473 K, and the yield strength and tensile strength are 37.0  and 43.0 MPa, respectively. The strain hardening ability increases gradually with increasing strain rate at elevated temperatures, and its dependence on strain rate is more significant at lower temperatures. The strain rate sensitivity coefficient gradually increases with increasing temperature, and the relatively high values of ~ 0.17 and ~ 0.14 are obtained at 473 and 523 K, respectively, indicating the absence of superplastic behavior. The fracture morphology shows that with increasing temperature, the fracture mode changes from brittle fracture to ductile fracture, which is closely related to the microstructural evolution during tensile deformation. The grain coarsening at 523 K may result in the slight decreases of elongation to failure and strain rate sensitivity coefficient as well as the recovery of strain hardening exponent. The apparent activation energy at 423-523 K is estimated to be 68.8-105.5 kJ/mol. Conclusively, DRX and grain growth should be the dominant mechanism accounting for the warm tensile deformation of AZ31 magnesium alloy sheets processed by CGP, while grain boundary sliding mechanism may contribute little, due to the developed bimodal structure during CGP and the relatively low temperatures for the tensile tests.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Fata, G. Faraji, M.M. Mashhadi, and V. Tavakkoli, Hot Tensile Deformation and Fracture Behavior of Ultrafine-Grained AZ31 Magnesium Alloy Processed by Severe Plastic Deformation, Mater. Sci. Eng. A, 2016, 674, p 9–17 A. Fata, G. Faraji, M.M. Mashhadi, and V. Tavakkoli, Hot Tensile Deformation and Fracture Behavior of Ultrafine-Grained AZ31 Magnesium Alloy Processed by Severe Plastic Deformation, Mater. Sci. Eng. A, 2016, 674, p 9–17
2.
Zurück zum Zitat J. Jia, Y. Xu, Y. Yang, C. Chen, W. Liu, L. Hu, and J. Luo, Microstructure Evolution of an AZ91D Magnesium Alloy Subjected to Intense Plastic Straining, J. Alloy. Compd., 2017, 721, p 347–362 J. Jia, Y. Xu, Y. Yang, C. Chen, W. Liu, L. Hu, and J. Luo, Microstructure Evolution of an AZ91D Magnesium Alloy Subjected to Intense Plastic Straining, J. Alloy. Compd., 2017, 721, p 347–362
3.
Zurück zum Zitat G. Song and A. Atrens, Understanding Magnesium Corrosion-A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858 G. Song and A. Atrens, Understanding Magnesium Corrosion-A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858
4.
Zurück zum Zitat A. Atrens, G. Song, F. Cao, Z. Shi, and P.K. Bowen, Advances in Mg Corrosion and Research Suggestions, J. Magnes. Alloy., 2013, 1, p 177–200 A. Atrens, G. Song, F. Cao, Z. Shi, and P.K. Bowen, Advances in Mg Corrosion and Research Suggestions, J. Magnes. Alloy., 2013, 1, p 177–200
5.
Zurück zum Zitat C. Liu, Q. Li, J. Liang, J. Zhou, and L. Wang, Microstructure and Corrosion Behaviour of Laser Surface Melting Treated WE43 Magnesium Alloy, RSC Adv., 2016, 6, p 30642–30651 C. Liu, Q. Li, J. Liang, J. Zhou, and L. Wang, Microstructure and Corrosion Behaviour of Laser Surface Melting Treated WE43 Magnesium Alloy, RSC Adv., 2016, 6, p 30642–30651
6.
Zurück zum Zitat R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45, p 103–189 R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45, p 103–189
7.
Zurück zum Zitat R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, and Y.T. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM-US, 2006, 58, p 33–39 R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, and Y.T. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM-US, 2006, 58, p 33–39
8.
Zurück zum Zitat C.P. Wang, F.G. Li, L. Wang, and H.J. Qiao, Review on Modified and Novel Techniques of Severe Plastic Deformation, Sci. China Technol. Sc., 2012, 55, p 2377–2390 C.P. Wang, F.G. Li, L. Wang, and H.J. Qiao, Review on Modified and Novel Techniques of Severe Plastic Deformation, Sci. China Technol. Sc., 2012, 55, p 2377–2390
9.
Zurück zum Zitat R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51, p 881–981 R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51, p 881–981
10.
Zurück zum Zitat A.P. Zhilyaev and T.G. Langdon, Using High-pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater Sci., 2008, 53, p 893–979 A.P. Zhilyaev and T.G. Langdon, Using High-pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater Sci., 2008, 53, p 893–979
11.
Zurück zum Zitat Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-high Straining Process for Bulk Materials-Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47, p 579–583 Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-high Straining Process for Bulk Materials-Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47, p 579–583
12.
Zurück zum Zitat N. Tsuji, Y. Saito, S. Lee, and Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2003, 5, p 338–344 N. Tsuji, Y. Saito, S. Lee, and Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2003, 5, p 338–344
13.
Zurück zum Zitat A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe Plastic Deformation (SPD) Processes for Metals, CIRP Ann. Manuf. Techn., 2008, 57, p 716–735 A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe Plastic Deformation (SPD) Processes for Metals, CIRP Ann. Manuf. Techn., 2008, 57, p 716–735
14.
Zurück zum Zitat D.H. Shin, J. Park, Y. Kim, and K. Park, Constrained Groove Pressing and its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, 328, p 98–103 D.H. Shin, J. Park, Y. Kim, and K. Park, Constrained Groove Pressing and its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, 328, p 98–103
15.
Zurück zum Zitat A.K. Gupta, T.S. Maddukuri, and S.K. Singh, Constrained Groove Pressing for Sheet Metal Processing, Prog. Mater Sci., 2016, 84, p 403–462 A.K. Gupta, T.S. Maddukuri, and S.K. Singh, Constrained Groove Pressing for Sheet Metal Processing, Prog. Mater Sci., 2016, 84, p 403–462
16.
Zurück zum Zitat A. Krishnaiah, U. Chakkingal, and P. Venugopal, Production of Ultrafine Grain Sizes in Aluminium Sheets by Severe Plastic Deformation Using the Technique of Groove Pressing, Scripta Mater., 2005, 52, p 1229–1233 A. Krishnaiah, U. Chakkingal, and P. Venugopal, Production of Ultrafine Grain Sizes in Aluminium Sheets by Severe Plastic Deformation Using the Technique of Groove Pressing, Scripta Mater., 2005, 52, p 1229–1233
17.
Zurück zum Zitat J. Zrnik, T. Kovarik, Z. Novy, and M. Cieslar, Ultrafine-Grained Structure Development and Deformation Behavior of Aluminium Processed by Constrained Groove Pressing, Mater. Sci. Eng. A, 2009, 503, p 126–129 J. Zrnik, T. Kovarik, Z. Novy, and M. Cieslar, Ultrafine-Grained Structure Development and Deformation Behavior of Aluminium Processed by Constrained Groove Pressing, Mater. Sci. Eng. A, 2009, 503, p 126–129
18.
Zurück zum Zitat H. Pouraliakbar, M.R. Jandaghi, S.J.M. Baygi, and G. Khalaj, Microanalysis of Crystallographic Characteristics and Structural Transformations in SPDed Al-Mn-Si Alloy by Dual-Straining, J. Alloy. Compd., 2017, 696, p 1189–1198 H. Pouraliakbar, M.R. Jandaghi, S.J.M. Baygi, and G. Khalaj, Microanalysis of Crystallographic Characteristics and Structural Transformations in SPDed Al-Mn-Si Alloy by Dual-Straining, J. Alloy. Compd., 2017, 696, p 1189–1198
19.
Zurück zum Zitat M. Moradpour, F. Khodabakhshi, and H. Eskandari, Dynamic Strain Aging Behavior of an Ultra-Fine Grained Al-Mg Alloy (AA5052) Processed Via Classical Constrained Groove Pressing, J. Mater. Res. Technol., 2019, 8, p 630–643 M. Moradpour, F. Khodabakhshi, and H. Eskandari, Dynamic Strain Aging Behavior of an Ultra-Fine Grained Al-Mg Alloy (AA5052) Processed Via Classical Constrained Groove Pressing, J. Mater. Res. Technol., 2019, 8, p 630–643
20.
Zurück zum Zitat S. Ghorbanhosseini, F. Fereshteh-Saniee, and A. Sonboli, An Experimental Investigation on the Influence of Elevated-Temperature Constrained Groove Pressing on the Microstructure, Mechanical Properties, Anisotropy and Texture of 2024 Al Sheets, J. Alloy. Compd., 2020, 817, p 152763 S. Ghorbanhosseini, F. Fereshteh-Saniee, and A. Sonboli, An Experimental Investigation on the Influence of Elevated-Temperature Constrained Groove Pressing on the Microstructure, Mechanical Properties, Anisotropy and Texture of 2024 Al Sheets, J. Alloy. Compd., 2020, 817, p 152763
21.
Zurück zum Zitat A. Krishnaiah, U. Chakkingal, and P. Venugopal, Applicability of the Groove Pressing Technique for Grain Refinement in Commercial Purity Copper, Mater. Sci. Eng. A, 2005, 410–411, p 337–340 A. Krishnaiah, U. Chakkingal, and P. Venugopal, Applicability of the Groove Pressing Technique for Grain Refinement in Commercial Purity Copper, Mater. Sci. Eng. A, 2005, 410–411, p 337–340
22.
Zurück zum Zitat K. Peng, L. Su, L.L. Shaw, and K.W. Qian, Grain Refinement and Crack Prevention in Constrained Groove Pressing of Two-Phase Cu-Zn Alloys, Scripta Mater., 2007, 56, p 987–990 K. Peng, L. Su, L.L. Shaw, and K.W. Qian, Grain Refinement and Crack Prevention in Constrained Groove Pressing of Two-Phase Cu-Zn Alloys, Scripta Mater., 2007, 56, p 987–990
23.
Zurück zum Zitat K. Peng, X. Mou, J. Zeng, L.L. Shaw, and K.W. Qian, Equivalent Strain, Microstructure and Hardness of H62 Brass Deformed by Constrained Groove Pressing, Comp. Mater. Sci., 2011, 50, p 1526–1532 K. Peng, X. Mou, J. Zeng, L.L. Shaw, and K.W. Qian, Equivalent Strain, Microstructure and Hardness of H62 Brass Deformed by Constrained Groove Pressing, Comp. Mater. Sci., 2011, 50, p 1526–1532
24.
Zurück zum Zitat F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Constrained Groove Pressing of Low Carbon Steel: Nano-structure and Mechanical Properties, Mater. Sci. Eng. A, 2010, 527, p 4043–4049 F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Constrained Groove Pressing of Low Carbon Steel: Nano-structure and Mechanical Properties, Mater. Sci. Eng. A, 2010, 527, p 4043–4049
25.
Zurück zum Zitat F. Khodabakhshi and M. Kazeminezhad, The Effect of Constrained Groove Pressing on Grain Size, Dislocation Density and Electrical Resistivity of Low Carbon Steel, Mater. Des., 2011, 32, p 3280–3286 F. Khodabakhshi and M. Kazeminezhad, The Effect of Constrained Groove Pressing on Grain Size, Dislocation Density and Electrical Resistivity of Low Carbon Steel, Mater. Des., 2011, 32, p 3280–3286
26.
Zurück zum Zitat F. Khodabakhshi and M. Kazeminezhad, The Annealing Phenomena and Thermal Stability of Severely Deformed Steel Sheet, Mater. Sci. Eng. A, 2011, 528, p 5212–5218 F. Khodabakhshi and M. Kazeminezhad, The Annealing Phenomena and Thermal Stability of Severely Deformed Steel Sheet, Mater. Sci. Eng. A, 2011, 528, p 5212–5218
27.
Zurück zum Zitat B.R. Sunil, A.A. Kumar, T.S.S. Kumar, and U. Chakkingal, Role of Biomineralization on the Degradation of Fine Grained AZ31 Magnesium Alloy Processed by Groove Pressing, Mater. Sci. Eng. C, 2013, 33, p 1607–1615 B.R. Sunil, A.A. Kumar, T.S.S. Kumar, and U. Chakkingal, Role of Biomineralization on the Degradation of Fine Grained AZ31 Magnesium Alloy Processed by Groove Pressing, Mater. Sci. Eng. C, 2013, 33, p 1607–1615
28.
Zurück zum Zitat K.S. Fong, D. Atsushi, T.M. Jen, and B.W. Chua, Effect of Deformation and Temperature Paths in Severe Plastic Deformation Using Groove Pressing on Microstructure, Texture, and Mechanical Properties of AZ31-O, ASME J. Manuf. Sci. Eng., 2015, 137, p 051004 K.S. Fong, D. Atsushi, T.M. Jen, and B.W. Chua, Effect of Deformation and Temperature Paths in Severe Plastic Deformation Using Groove Pressing on Microstructure, Texture, and Mechanical Properties of AZ31-O, ASME J. Manuf. Sci. Eng., 2015, 137, p 051004
29.
Zurück zum Zitat K.S. Fong, M.J. Tan, F.L. Ng, A. Danno, and B.W. Chua, Microstructure Stability of a Fine-Grained AZ31 Magnesium Alloy Processed by Constrained Groove Pressing during Isothermal Annealing, ASME J. Manuf. Sci. Eng., 2017, 139, p 081007 K.S. Fong, M.J. Tan, F.L. Ng, A. Danno, and B.W. Chua, Microstructure Stability of a Fine-Grained AZ31 Magnesium Alloy Processed by Constrained Groove Pressing during Isothermal Annealing, ASME J. Manuf. Sci. Eng., 2017, 139, p 081007
30.
Zurück zum Zitat K.S. Fong, A. Danno, M.J. Tan, and B.W. Chua, Tensile Flow Behavior of AZ31 Magnesium Alloy Processed by Severe Plastic Deformation and Post-Annealing at Moderately High Temperatures, J. Mater. Process. Technol., 2017, 246, p 235–244 K.S. Fong, A. Danno, M.J. Tan, and B.W. Chua, Tensile Flow Behavior of AZ31 Magnesium Alloy Processed by Severe Plastic Deformation and Post-Annealing at Moderately High Temperatures, J. Mater. Process. Technol., 2017, 246, p 235–244
31.
Zurück zum Zitat M.M. Hoseini-Athar, R. Mahmudi, R.P. Babu, and P. Hedström, Microstructural Evolution and Superplastic Behavior of a Fine-Grained Mg-Gd Alloy Processed by Constrained Groove Pressing, Mater. Sci. Eng. A, 2019, 754, p 390–399 M.M. Hoseini-Athar, R. Mahmudi, R.P. Babu, and P. Hedström, Microstructural Evolution and Superplastic Behavior of a Fine-Grained Mg-Gd Alloy Processed by Constrained Groove Pressing, Mater. Sci. Eng. A, 2019, 754, p 390–399
32.
Zurück zum Zitat Z. Wang, Y. Guan, T. Wang, Q. Zhang, X. Wei, X. Fang, G. Zhu, and S. Gao, Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets Processed by Constrained Groove Pressing, Mater. Sci. Eng. A, 2019, 745, p 450–459 Z. Wang, Y. Guan, T. Wang, Q. Zhang, X. Wei, X. Fang, G. Zhu, and S. Gao, Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets Processed by Constrained Groove Pressing, Mater. Sci. Eng. A, 2019, 745, p 450–459
33.
Zurück zum Zitat Z. Wang, Y. Guan, G. Wang, and C. Zhong, Influences of Die Structure on Constrained Groove Pressing of Commercially Pure Ni Sheets, J. Mater. Process. Technol., 2015, 215, p 205–218 Z. Wang, Y. Guan, G. Wang, and C. Zhong, Influences of Die Structure on Constrained Groove Pressing of Commercially Pure Ni Sheets, J. Mater. Process. Technol., 2015, 215, p 205–218
34.
Zurück zum Zitat T. Krajňák, P. Minárik, J. Stráská, J. Gubicza, K. Máthis, and M. Janeček, Influence of Equal Channel Angular Pressing Temperature on Texture, Microstructure and Mechanical Properties of Extruded AX41 Magnesium, J. Alloy. Compd., 2017, 705, p 273–282 T. Krajňák, P. Minárik, J. Stráská, J. Gubicza, K. Máthis, and M. Janeček, Influence of Equal Channel Angular Pressing Temperature on Texture, Microstructure and Mechanical Properties of Extruded AX41 Magnesium, J. Alloy. Compd., 2017, 705, p 273–282
35.
Zurück zum Zitat R.B. Figueiredo and T.G. Langdon, Principles of Grain Refinement in Magnesium Alloys Processed by Equal-Channel Angular Pressing, J. Mater. Sci., 2009, 44, p 4758–4762 R.B. Figueiredo and T.G. Langdon, Principles of Grain Refinement in Magnesium Alloys Processed by Equal-Channel Angular Pressing, J. Mater. Sci., 2009, 44, p 4758–4762
36.
Zurück zum Zitat R.B. Figueiredo and T.G. Langdon, Grain Refinement and Mechanical Behavior of a Magnesium Alloy Processed by ECAP, J. Mater. Sci., 2010, 45, p 4827–4836 R.B. Figueiredo and T.G. Langdon, Grain Refinement and Mechanical Behavior of a Magnesium Alloy Processed by ECAP, J. Mater. Sci., 2010, 45, p 4827–4836
37.
Zurück zum Zitat Z. Wang, Y. Guan, and P. Liang, Deformation Efficiency, Homogeneity, and Electrical Resistivity of Pure Copper Processed by Constrained Groove Pressing, Rare Met., 2014, 33, p 287–292 Z. Wang, Y. Guan, and P. Liang, Deformation Efficiency, Homogeneity, and Electrical Resistivity of Pure Copper Processed by Constrained Groove Pressing, Rare Met., 2014, 33, p 287–292
38.
Zurück zum Zitat P.C. Yadav, A. Sinhal, S. Sahu, A. Roy, and S. Shekhar, Microstructural Inhomogeneity in Constrained Groove Pressed Cu-Zn Alloy Sheet, J. Mater. Eng. Perform., 2016, 25, p 2604–2614 P.C. Yadav, A. Sinhal, S. Sahu, A. Roy, and S. Shekhar, Microstructural Inhomogeneity in Constrained Groove Pressed Cu-Zn Alloy Sheet, J. Mater. Eng. Perform., 2016, 25, p 2604–2614
39.
Zurück zum Zitat J. Victoria-Hernández, J. Suh, S. Yi, J. Bohlen, W. Volk, and D. Letzig, Strain-Induced Selective Grain Growth in AZ31 Mg Alloy Sheet Deformed by Equal Channel Angular Pressing, Mater. Charact., 2016, 113, p 98–107 J. Victoria-Hernández, J. Suh, S. Yi, J. Bohlen, W. Volk, and D. Letzig, Strain-Induced Selective Grain Growth in AZ31 Mg Alloy Sheet Deformed by Equal Channel Angular Pressing, Mater. Charact., 2016, 113, p 98–107
40.
Zurück zum Zitat T. Ungár, Microstructural Parameters from x-ray Diffraction Peak Broadening, Scripta Mater., 2004, 51, p 777–781 T. Ungár, Microstructural Parameters from x-ray Diffraction Peak Broadening, Scripta Mater., 2004, 51, p 777–781
41.
Zurück zum Zitat S.S.S. Kumar and T. Raghu, Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique, Mater. Des., 2014, 57, p 114–120 S.S.S. Kumar and T. Raghu, Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique, Mater. Des., 2014, 57, p 114–120
42.
Zurück zum Zitat P. Mukherjee, A. Sarkar, and P. Barat, Microstructural Changes in Oxygen-Irradiated Zirconium-Based Alloy Characterised by x-ray Diffraction Techniques, Mater. Charact., 2005, 55, p 412–417 P. Mukherjee, A. Sarkar, and P. Barat, Microstructural Changes in Oxygen-Irradiated Zirconium-Based Alloy Characterised by x-ray Diffraction Techniques, Mater. Charact., 2005, 55, p 412–417
43.
Zurück zum Zitat T. Han, G. Huang, Q. Deng, G. Wang, B. Jiang, A. Tang, Y. Zhu, and F. Pan, Grain refining and Mechanical Properties of AZ31 Alloy Processed by Accumulated Extrusion Bonding, J. Alloy. Compd., 2018, 745, p 599–608 T. Han, G. Huang, Q. Deng, G. Wang, B. Jiang, A. Tang, Y. Zhu, and F. Pan, Grain refining and Mechanical Properties of AZ31 Alloy Processed by Accumulated Extrusion Bonding, J. Alloy. Compd., 2018, 745, p 599–608
44.
Zurück zum Zitat Y. Yan, W. Deng, Z. Gao, J. Zhu, Z. Wang, and X. Li, Coupled Influence of Temperature and Strain Rate on Tensile Deformation Characteristics of Hot-Extruded AZ31 Magnesium Alloy, Acta Metall, Sin. Engl., 2016, 29, p 163–172 Y. Yan, W. Deng, Z. Gao, J. Zhu, Z. Wang, and X. Li, Coupled Influence of Temperature and Strain Rate on Tensile Deformation Characteristics of Hot-Extruded AZ31 Magnesium Alloy, Acta Metall, Sin. Engl., 2016, 29, p 163–172
45.
Zurück zum Zitat C. Bruni, A. Forcellese, F. Gabrielli, and M. Simoncini, Effect of Temperature, Strain Rate and Fibre Orientation on the Plastic Flow Behaviour and Formability of AZ31 Magnesium Alloy, J. Mater. Process. Technol., 2010, 210, p 1354–1363 C. Bruni, A. Forcellese, F. Gabrielli, and M. Simoncini, Effect of Temperature, Strain Rate and Fibre Orientation on the Plastic Flow Behaviour and Formability of AZ31 Magnesium Alloy, J. Mater. Process. Technol., 2010, 210, p 1354–1363
46.
Zurück zum Zitat S. Spigarelli, O.A. Ruano, M. El Mehtedi, and J.A. Del Valle, High Temperature Deformation and Microstructural Instability in AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 570, p 135–148 S. Spigarelli, O.A. Ruano, M. El Mehtedi, and J.A. Del Valle, High Temperature Deformation and Microstructural Instability in AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 570, p 135–148
47.
Zurück zum Zitat A. Fata, G. Faraji, M.M. Mashhadi, and V. Tavakkoli, Hot Deformation Behavior of Mg-Zn-Al Alloy tube Processed by Severe Plastic Deformation, Arch. Metall. Mater., 2017, 62, p 159–166 A. Fata, G. Faraji, M.M. Mashhadi, and V. Tavakkoli, Hot Deformation Behavior of Mg-Zn-Al Alloy tube Processed by Severe Plastic Deformation, Arch. Metall. Mater., 2017, 62, p 159–166
48.
Zurück zum Zitat J.C. Tan and M.J. Tan, Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg-3Al-1Zn Alloy Sheet, Mater. Sci. Eng. A, 2003, 339, p 124–132 J.C. Tan and M.J. Tan, Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg-3Al-1Zn Alloy Sheet, Mater. Sci. Eng. A, 2003, 339, p 124–132
49.
Zurück zum Zitat T. Al-Samman and G. Gottstein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 2008, 490, p 411–420 T. Al-Samman and G. Gottstein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 2008, 490, p 411–420
50.
Zurück zum Zitat S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi, Dynamic Recrystallization in AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2007, 456, p 52–57 S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi, Dynamic Recrystallization in AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2007, 456, p 52–57
51.
Zurück zum Zitat M. Eftekhari, A. Fata, G. Faraji, and M.M. Mashhadi, Hot Tensile Deformation Behavior of Mg-Zn-Al Magnesium Alloy Tubes Processed by Severe Plastic Deformation, J. Alloy. Compd., 2018, 742, p 442–453 M. Eftekhari, A. Fata, G. Faraji, and M.M. Mashhadi, Hot Tensile Deformation Behavior of Mg-Zn-Al Magnesium Alloy Tubes Processed by Severe Plastic Deformation, J. Alloy. Compd., 2018, 742, p 442–453
52.
Zurück zum Zitat J. Deng, Y.C. Lin, S. Li, J. Chen, and Y. Ding, Hot tensile Deformation and Fracture Behaviors of AZ31 Magnesium Alloy, Mater. Des., 2013, 49, p 209–219 J. Deng, Y.C. Lin, S. Li, J. Chen, and Y. Ding, Hot tensile Deformation and Fracture Behaviors of AZ31 Magnesium Alloy, Mater. Des., 2013, 49, p 209–219
53.
Zurück zum Zitat D.R. Fang, Z.F. Zhang, S.D. Wu, C.X. Huang, H. Zhang, N.Q. Zhao, and J.J. Li, Effect of Equal Channel Angular Pressing on Tensile Properties and Fracture Modes of Casting Al-Cu Alloys, Mater. Sci. Eng. A, 2006, 426, p 305–313 D.R. Fang, Z.F. Zhang, S.D. Wu, C.X. Huang, H. Zhang, N.Q. Zhao, and J.J. Li, Effect of Equal Channel Angular Pressing on Tensile Properties and Fracture Modes of Casting Al-Cu Alloys, Mater. Sci. Eng. A, 2006, 426, p 305–313
54.
Zurück zum Zitat D.R. Fang, Q.Q. Duan, N.Q. Zhao, J.J. Li, S.D. Wu, and Z.F. Zhang, Tensile Properties and Fracture Mechanism of Al-Mg Alloy Subjected to Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2007, 459, p 137–144 D.R. Fang, Q.Q. Duan, N.Q. Zhao, J.J. Li, S.D. Wu, and Z.F. Zhang, Tensile Properties and Fracture Mechanism of Al-Mg Alloy Subjected to Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2007, 459, p 137–144
55.
Zurück zum Zitat E.J. Pavlina and C.J. Van Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17, p 888–893 E.J. Pavlina and C.J. Van Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17, p 888–893
56.
Zurück zum Zitat Z. Tang and W. Stumpf, The Effect of Microstructure and Processing Variables on the Yield to Ultimate Tensile Strength Ratio in a Nb-Ti and a Nb-Ti-Mo Line Pipe Steel, Mater. Sci. Eng. A, 2008, 490, p 391–402 Z. Tang and W. Stumpf, The Effect of Microstructure and Processing Variables on the Yield to Ultimate Tensile Strength Ratio in a Nb-Ti and a Nb-Ti-Mo Line Pipe Steel, Mater. Sci. Eng. A, 2008, 490, p 391–402
57.
Zurück zum Zitat C.L. Chow, L.G. Yu, and M.Y. Demeri, A Unified Damage Approach for Predicting Forming Limit Diagrams, ASME J. Eng. Mater. Technol., 1997, 119, p 346–353 C.L. Chow, L.G. Yu, and M.Y. Demeri, A Unified Damage Approach for Predicting Forming Limit Diagrams, ASME J. Eng. Mater. Technol., 1997, 119, p 346–353
58.
Zurück zum Zitat T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207 T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207
59.
Zurück zum Zitat M. Kawasaki, R.B. Figueiredo, and T.G. Langdon, The Flow Characteristics of Superplasticity, Lett. Mater., 2014, 4, p 78–83 M. Kawasaki, R.B. Figueiredo, and T.G. Langdon, The Flow Characteristics of Superplasticity, Lett. Mater., 2014, 4, p 78–83
60.
Zurück zum Zitat T.G. Langdon, Achieving Superplasticity in Ultrafine-Grained Metals, Mech. Mater., 2013, 67, p 2–8 T.G. Langdon, Achieving Superplasticity in Ultrafine-Grained Metals, Mech. Mater., 2013, 67, p 2–8
61.
Zurück zum Zitat F. Cao, F. Xia, and G. Xue, Hot Tensile Deformation Behavior and Microstructural Evolution of a Mg-9.3Li-1.79Al-1.61Zn Alloy, Mater. Des., 2016, 92, p 44–57 F. Cao, F. Xia, and G. Xue, Hot Tensile Deformation Behavior and Microstructural Evolution of a Mg-9.3Li-1.79Al-1.61Zn Alloy, Mater. Des., 2016, 92, p 44–57
62.
Zurück zum Zitat F.D. Dumitru, O.F. Higuera-Cobos, and J.M. Cabrera, ZK60 Alloy Processed by ECAP: Microstructural, Physical and Mechanical Characterization, Mater. Sci. Eng. A, 2014, 594, p 32–39 F.D. Dumitru, O.F. Higuera-Cobos, and J.M. Cabrera, ZK60 Alloy Processed by ECAP: Microstructural, Physical and Mechanical Characterization, Mater. Sci. Eng. A, 2014, 594, p 32–39
63.
Zurück zum Zitat F. Pan, J. Mao, X. Chen, J. Peng, and J. Wang, Influence of Impurities on Microstructure and Mechanical Properties of ZK60 Magnesium Alloy, T. Nonferr. Metal. Soc., 2010, 20, p 1299–1304 F. Pan, J. Mao, X. Chen, J. Peng, and J. Wang, Influence of Impurities on Microstructure and Mechanical Properties of ZK60 Magnesium Alloy, T. Nonferr. Metal. Soc., 2010, 20, p 1299–1304
64.
Zurück zum Zitat W. Yang, X. Guo, and K. Yang, Low Temperature Quasi-Superplasticity of ZK60 Alloy Prepared by Reciprocating Extrusion, T. Nonferr. Metal. Soc., 2012, 22, p 255–261 W. Yang, X. Guo, and K. Yang, Low Temperature Quasi-Superplasticity of ZK60 Alloy Prepared by Reciprocating Extrusion, T. Nonferr. Metal. Soc., 2012, 22, p 255–261
65.
Zurück zum Zitat O. Sabokpa, A. Zarei-Hanzaki, and H.R. Abedi, An Investigation into the Hot Ductility Behavior of AZ81 Magnesium Alloy, Mater. Sci. Eng. A, 2012, 550, p 31–38 O. Sabokpa, A. Zarei-Hanzaki, and H.R. Abedi, An Investigation into the Hot Ductility Behavior of AZ81 Magnesium Alloy, Mater. Sci. Eng. A, 2012, 550, p 31–38
66.
Zurück zum Zitat P.S. Roodposhti, A. Sarkar, and K.L. Murty, Fracture Behavior of AZ31 Magnesium Alloy During Low-Stress High-Temperature Deformation, Metallogr. Microstruct. Anal., 2015, 4, p 91–101 P.S. Roodposhti, A. Sarkar, and K.L. Murty, Fracture Behavior of AZ31 Magnesium Alloy During Low-Stress High-Temperature Deformation, Metallogr. Microstruct. Anal., 2015, 4, p 91–101
67.
Zurück zum Zitat H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps, Peragamon Press, Oxford, 1982 H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps, Peragamon Press, Oxford, 1982
68.
Zurück zum Zitat O.A. Ruano, A.K. Miller, and O.D. Sherby, The Influence of Pipe Diffusion on the Creep of Fine-Grained Materials, Mater. Sci. Eng., 1981, 51, p 9–16 O.A. Ruano, A.K. Miller, and O.D. Sherby, The Influence of Pipe Diffusion on the Creep of Fine-Grained Materials, Mater. Sci. Eng., 1981, 51, p 9–16
69.
Zurück zum Zitat J. Lu, L. Jin, J. Dong, X. Zeng, and W. Ding, Z, Yao, Deformation Behaviors of AZ31 Magnesium Alloy by Equal Channel Angular Extrusion, T. Nonferr. Metal. Soc., 2009, 19, p 424–432 J. Lu, L. Jin, J. Dong, X. Zeng, and W. Ding, Z, Yao, Deformation Behaviors of AZ31 Magnesium Alloy by Equal Channel Angular Extrusion, T. Nonferr. Metal. Soc., 2009, 19, p 424–432
70.
Zurück zum Zitat M.Y. Zheng, S.W. Xu, X.G. Qiao, K. Wu, S. Kamado, and Y. Kojima, Compressive Deformation of Mg-Zn-Y-Zr Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2008, 483–484, p 564–567 M.Y. Zheng, S.W. Xu, X.G. Qiao, K. Wu, S. Kamado, and Y. Kojima, Compressive Deformation of Mg-Zn-Y-Zr Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2008, 483–484, p 564–567
71.
Zurück zum Zitat J.C. Tan and M.J. Tan, Superplasticity and Grain Boundary Sliding Characteristics in Two Stage Deformation of Mg-3Al-1Zn Alloy Sheet, Mater. Sci. Eng. A, 2003, 339, p 81–89 J.C. Tan and M.J. Tan, Superplasticity and Grain Boundary Sliding Characteristics in Two Stage Deformation of Mg-3Al-1Zn Alloy Sheet, Mater. Sci. Eng. A, 2003, 339, p 81–89
Metadaten
Titel
Warm Tensile Deformation and Fracture Behavior of AZ31 Magnesium Alloy Sheets Processed by Constrained Groove Pressing
verfasst von
Zongshen Wang
Kangning Wang
Xiebin Wang
Tao Wang
Lihua Zhu
Yanjin Guan
Publikationsdatum
26.10.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05220-y

Weitere Artikel der Ausgabe 11/2020

Journal of Materials Engineering and Performance 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.