Skip to main content
Erschienen in: Wireless Personal Communications 3/2022

29.10.2021

Wideband High Gain Active Feedback Transimpedance Amplifier

verfasst von: Preeti Singh, Maneesha Gupta, Bhawna Aggarwal, Shireesh Kumar Rai

Erschienen in: Wireless Personal Communications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new wideband high gain CMOS transimpedance amplifier is presented without using any inductor. In the proposed TIA, gain enhancing path is introduced in the active voltage-current feedback TIA topology to increase both the gain and bandwidth. This path increases the transconductance of the proposed TIA which reduces the input resistance and leads to bandwidth extension. Additionally, for utilizing the benefit of this topology, cascading of common source stage is also done to increase the gain further without deteriorating the bandwidth. Mathematical analysis is also performed to evaluate both the gain and bandwidth enhancement. These analyses are supported by simulations that are done using TSMC 0.18 µm CMOS technology with the input photodiode capacitance of 0.3 pF. The proposed TIA occupies 0.019 mm2 area and consumes 3.2 mW from 1.8 V supply voltage. The transimpedance gain of the proposed TIA is found to be 57.15 dBΩ over the bandwidth of 6.5 GHz. The input noise is 17.16 pA/√Hz.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Amourah, M. M., & Geiger, R. L. (2010). A high gain strategy with positive-feedback gain enhancement technique. IEEE International Symposium on Circuits and Systems, 1, 631–634. Amourah, M. M., & Geiger, R. L. (2010). A high gain strategy with positive-feedback gain enhancement technique. IEEE International Symposium on Circuits and Systems, 1, 631–634.
2.
Zurück zum Zitat Yan, S., & Sanchez-Sinencio, E. (2000). Low voltage analog circuit design techniques: A tutorial. IEICE Transanctions on Fundamental of Electronics, 83, 179–196. Yan, S., & Sanchez-Sinencio, E. (2000). Low voltage analog circuit design techniques: A tutorial. IEICE Transanctions on Fundamental of Electronics, 83, 179–196.
3.
Zurück zum Zitat Singh, U., Gupta, M., & Srivastava, R. (2015). A new wideband regulated cascode amplifier with improved performance and its application. Microelectronics Journal, 46, 758–776.CrossRef Singh, U., Gupta, M., & Srivastava, R. (2015). A new wideband regulated cascode amplifier with improved performance and its application. Microelectronics Journal, 46, 758–776.CrossRef
4.
Zurück zum Zitat Chien, J., & Lu, L. (2007). 40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-um CMOS. IEEE Journal of Solid-State Circuits, 42, 2715–2725.CrossRef Chien, J., & Lu, L. (2007). 40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-um CMOS. IEEE Journal of Solid-State Circuits, 42, 2715–2725.CrossRef
5.
Zurück zum Zitat Mohan, S. S., Hershenson, M. D. M., Boyd, S. P., & Lee, T. H. (2000). Bandwidth extension in CMOS with optimized on-chip inductors. IEEE Journal of Solid-State Circuits, 35, 346–355.CrossRef Mohan, S. S., Hershenson, M. D. M., Boyd, S. P., & Lee, T. H. (2000). Bandwidth extension in CMOS with optimized on-chip inductors. IEEE Journal of Solid-State Circuits, 35, 346–355.CrossRef
6.
Zurück zum Zitat Pan, Q., Wang, Y., & Yue, C. P. (2020). A 42-dBΩ 25-Gb/s CMOS transimpedance amplifier with multiple-peaking scheme for optical communications. IEEE Transactions on Circuits and Systems II: Express Briefs, 67, 72–76. Pan, Q., Wang, Y., & Yue, C. P. (2020). A 42-dBΩ 25-Gb/s CMOS transimpedance amplifier with multiple-peaking scheme for optical communications. IEEE Transactions on Circuits and Systems II: Express Briefs, 67, 72–76.
7.
Zurück zum Zitat Lu, Z., Yeo, K. S., Ma, J., Do, M. A., Lim, W. M., & Chen, X. (2007). Broadband design techniques for transimpedance amplifiers. IEEE Transaction Circuit System I Regular Papers, 54, 590–600.CrossRef Lu, Z., Yeo, K. S., Ma, J., Do, M. A., Lim, W. M., & Chen, X. (2007). Broadband design techniques for transimpedance amplifiers. IEEE Transaction Circuit System I Regular Papers, 54, 590–600.CrossRef
9.
Zurück zum Zitat Zhang, Y. (2008). Design of CMOS front-end receivers for optical wireless communication. Tufts University. Zhang, Y. (2008). Design of CMOS front-end receivers for optical wireless communication. Tufts University.
10.
Zurück zum Zitat Shahdoost, S., Medi, A., & Saniei, N. (2016). Design of low-noise transimpedance amplifers with capacitive feedback. Analog Integrated Circuits and Processing, 86, 233–240.CrossRef Shahdoost, S., Medi, A., & Saniei, N. (2016). Design of low-noise transimpedance amplifers with capacitive feedback. Analog Integrated Circuits and Processing, 86, 233–240.CrossRef
11.
Zurück zum Zitat Singh, P., Gupta, M., & Bansal, U. (2018). Wideband transimpedance amplifier using negative capacitance and capacitive feedback. Analog Integrated Circuits and Signal Processing, 97, 269–279.CrossRef Singh, P., Gupta, M., & Bansal, U. (2018). Wideband transimpedance amplifier using negative capacitance and capacitive feedback. Analog Integrated Circuits and Signal Processing, 97, 269–279.CrossRef
12.
Zurück zum Zitat Razavi, B. (2003). Design of Integrated Circuits for Optical Communications. McGraw-Hill. Razavi, B. (2003). Design of Integrated Circuits for Optical Communications. McGraw-Hill.
13.
Zurück zum Zitat Park, S. M., et al. (2004). 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications. IEEE Journal of Solid-State Circuits, 39, 112–121.CrossRef Park, S. M., et al. (2004). 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications. IEEE Journal of Solid-State Circuits, 39, 112–121.CrossRef
14.
Zurück zum Zitat Sackinger, E., & Guggenbuhl, W. (1990). A high-swing, high-impedance MOS cascode circuit. IEEE Journal Solid-State Circuits, 25, 289–298.CrossRef Sackinger, E., & Guggenbuhl, W. (1990). A high-swing, high-impedance MOS cascode circuit. IEEE Journal Solid-State Circuits, 25, 289–298.CrossRef
15.
Zurück zum Zitat Seifouri, M., Amiri, P., & Dadras, I. (2017). A transimpedance amplifier for optical communication network based on active voltage feedback. Microelectronics Journal, 67, 25–31.CrossRef Seifouri, M., Amiri, P., & Dadras, I. (2017). A transimpedance amplifier for optical communication network based on active voltage feedback. Microelectronics Journal, 67, 25–31.CrossRef
16.
Zurück zum Zitat Gray, P. R., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits. Wiley. Gray, P. R., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits. Wiley.
17.
Zurück zum Zitat Sansen, W. M. C., & Chang, Z. Y. (1991). Low-noise wide-band amplifiers in bipolar and CMOS technologies. Springer. Sansen, W. M. C., & Chang, Z. Y. (1991). Low-noise wide-band amplifiers in bipolar and CMOS technologies. Springer.
18.
Zurück zum Zitat Han, S. M., Sun, G., & Jiang, F. (2009). Area-efficient CMOS transimpedance amplifier for optical receivers. Analog Integrated Circuit and Signal Processing, 58, 67–70.CrossRef Han, S. M., Sun, G., & Jiang, F. (2009). Area-efficient CMOS transimpedance amplifier for optical receivers. Analog Integrated Circuit and Signal Processing, 58, 67–70.CrossRef
19.
Zurück zum Zitat Chen, D., Yeo, K. S., Shi, X., Do, M. A., Boon, C. C., & Lim, W. M. (2013). Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission. IEEE Transactions on very large scale of integration (VLSI) systems, 21, 1516–1525.CrossRef Chen, D., Yeo, K. S., Shi, X., Do, M. A., Boon, C. C., & Lim, W. M. (2013). Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission. IEEE Transactions on very large scale of integration (VLSI) systems, 21, 1516–1525.CrossRef
20.
Zurück zum Zitat Taghavi, M. H., Belostotski, L., Haslett, J. W., & Ahmadi, P. (2015). A CMOS low-power cross-coupled immittance-converter transimpedance amplifier. IEEE Microwave and Wireless Components Letters, 25, 403–405.CrossRef Taghavi, M. H., Belostotski, L., Haslett, J. W., & Ahmadi, P. (2015). A CMOS low-power cross-coupled immittance-converter transimpedance amplifier. IEEE Microwave and Wireless Components Letters, 25, 403–405.CrossRef
21.
Zurück zum Zitat Marufuzzaman, M., Reaz, M. B. I., & Yeng, L. S. (2018). Design of low-cost transimpedance amplifier for optical receiver. Transaction on Electrical and Electronic Material, 1, 7–13.CrossRef Marufuzzaman, M., Reaz, M. B. I., & Yeng, L. S. (2018). Design of low-cost transimpedance amplifier for optical receiver. Transaction on Electrical and Electronic Material, 1, 7–13.CrossRef
Metadaten
Titel
Wideband High Gain Active Feedback Transimpedance Amplifier
verfasst von
Preeti Singh
Maneesha Gupta
Bhawna Aggarwal
Shireesh Kumar Rai
Publikationsdatum
29.10.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09262-w

Weitere Artikel der Ausgabe 3/2022

Wireless Personal Communications 3/2022 Zur Ausgabe

Neuer Inhalt