Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2018 | OriginalPaper | Buchkapitel

47. World’s Best Universities and Personalized Rankings

verfasst von: Mario Inostroza-Ponta, Natalie Jane de Vries, Pablo Moscato

Erschienen in: Handbook of Heuristics

Verlag: Springer International Publishing

share
TEILEN

Abstract

This chapter presents a heuristic for a multi-objective ranking problem using a dataset of international interest as an example of its application, namely, the ranking of the world’s top educational institutions. The problem of ranking academic institutions is a subject of keen interest for administrators, consumers, and research policy makers. From a mathematical perspective, the proposed heuristic addresses the need for more transparent models and associated methods related to the problem of identifying sound relative rankings of objects with multiple attributes. The low complexity of the method allows software implementations that scale well for thousands of objects as well as permitting reasonable visualization. It is shown that a simple and multi-objective-aware ranking system can easily be implemented, which naturally leads to intuitive research policies resulting from varying scenarios presented within. The only assumption that this method relies on is the ability to sort the candidate objects according to each given attribute. Thus the attributes could be numerical or ordinal in nature. This helps to avoid the selection of an ad hoc single score based on an arbitrary assignment of attributes’ weights as other heuristics do. To illustrate the use of this proposed methodology, results are presented and obtained using the dataset on the ranking of world universities (of the years 2007–2012), by academic performance, published annually by ARWU.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Agnew T, Whitlock R, Neutze J, Kerr A (1994) Waiting lists for coronary artery surgery: can they be better organised? N Z Med J 107(979):211–215 Agnew T, Whitlock R, Neutze J, Kerr A (1994) Waiting lists for coronary artery surgery: can they be better organised? N Z Med J 107(979):211–215
4.
Zurück zum Zitat Bang-Jensen J, Gutin G (2001) Digraphs: theory, algorithms and applications. Springer, London Bang-Jensen J, Gutin G (2001) Digraphs: theory, algorithms and applications. Springer, London
18.
Zurück zum Zitat Gerani S, Zhai C, Crestani F (2012) Score transformation in linear combination for multi-criteria relevance ranking. In: Advances in information retrieval – proceedings of 34th European conference on IR research, ECIR 2012, Barcelona, pp 256–267 Gerani S, Zhai C, Crestani F (2012) Score transformation in linear combination for multi-criteria relevance ranking. In: Advances in information retrieval – proceedings of 34th European conference on IR research, ECIR 2012, Barcelona, pp 256–267
31.
Zurück zum Zitat Lerche DB, Brüggemann R, Sørensen PB, Carlsen L, Nielsen OJ (2002) A comparison of partial order technique with three methods of multi-criteria analysis for ranking of chemical substances. J Chem Inf Comput Sci 42(5):1086–1098. https://​doi.​org/​10.​1021/​ci010268p Lerche DB, Brüggemann R, Sørensen PB, Carlsen L, Nielsen OJ (2002) A comparison of partial order technique with three methods of multi-criteria analysis for ranking of chemical substances. J Chem Inf Comput Sci 42(5):1086–1098. https://​doi.​org/​10.​1021/​ci010268p
32.
36.
Zurück zum Zitat López JCL, Chavira DAG, Noriega JJS (2014) A multiobjective genetic algorithm based on NSGA II for deriving final ranking from a medium-sized fuzzy outranking relation. In: 2014 IEEE symposium on computational intelligence in multi-criteria decision-making, MCDM 2014, Orlando, pp 24–31. https://​doi.​org/​10.​1109/​MCDM.​2014.​7007184 López JCL, Chavira DAG, Noriega JJS (2014) A multiobjective genetic algorithm based on NSGA II for deriving final ranking from a medium-sized fuzzy outranking relation. In: 2014 IEEE symposium on computational intelligence in multi-criteria decision-making, MCDM 2014, Orlando, pp 24–31. https://​doi.​org/​10.​1109/​MCDM.​2014.​7007184
51.
Zurück zum Zitat Reba MNM, Rosli AZ, Makhfuz MA, Sabarudin NS, Roslan NH (2013) Determination of sustainable land potential based on priority ranking: multi-criteria analysis (MCA) technique. In: Computational science and its applications – ICCSA 2013 – proceedings of 13th international conference, Ho Chi Minh City, part VI, pp 212–218. https://​doi.​org/​10.​1109/​ICCSA.​2013.​44 Reba MNM, Rosli AZ, Makhfuz MA, Sabarudin NS, Roslan NH (2013) Determination of sustainable land potential based on priority ranking: multi-criteria analysis (MCA) technique. In: Computational science and its applications – ICCSA 2013 – proceedings of 13th international conference, Ho Chi Minh City, part VI, pp 212–218. https://​doi.​org/​10.​1109/​ICCSA.​2013.​44
59.
Zurück zum Zitat Thakur M (2007) The impact of ranking systems on higher education and its stakeholders. J Inst Res 13(1):83–96 MathSciNet Thakur M (2007) The impact of ranking systems on higher education and its stakeholders. J Inst Res 13(1):83–96 MathSciNet
63.
Zurück zum Zitat Voll CA, Goodwin JE, Pitney WA (1999) Athletic training education programs: to rank or not to rank? J Athl Train 34(1):48–52. http://​search.​proquest.​com/​docview/​206648692?​accountid=​45394 Voll CA, Goodwin JE, Pitney WA (1999) Athletic training education programs: to rank or not to rank? J Athl Train 34(1):48–52. http://​search.​proquest.​com/​docview/​206648692?​accountid=​45394
Metadaten
Titel
World’s Best Universities and Personalized Rankings
verfasst von
Mario Inostroza-Ponta
Natalie Jane de Vries
Pablo Moscato
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-07124-4_60

Premium Partner