Skip to main content
Erschienen in: Wireless Personal Communications 4/2018

09.05.2018

A 3.1–10.6 GHz UWB LNA Based on Self Cascode Technique for Improved Bandwidth and High Gain

verfasst von: Sunil Pandey, Tushar Gawande, P. N. Kondekar

Erschienen in: Wireless Personal Communications | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we present a self cascode based ultra-wide band (UWB) low noise amplifier (LNA) with improved bandwidth and gain for 3.1–10.6 GHz wireless applications. The self cascode (SC) or split-length compensation technique is employed to improve the bandwidth and gain of the proposed LNA. The improvement in the bandwidth of SC based structure is around 1.22 GHz as compared to simple one. The significant enhancement in the characteristics of the introduced circuit is found without extra passive components. The SC based CS–CG structure in the proposed LNA uses the same DC current for operating first stage transistors. In the designed UWB LNA, a common source (CS) stage is used in the second stage to enhance the overall gain in the high frequency regime. With a standard 90 nm CMOS technology, the presented UWB LNA results in a gain \(\hbox {S}_{21}\) of \(20.10 \pm 1.65\,\hbox {dB}\) across the 3.1–10.6 GHz frequency range, and dissipating 11.52 mW power from a 1 V supply voltage. However, input reflection, \(\hbox {S}_{11}\), lies below \(-\,10\) dB from 4.9–9.1 GHz frequency. Moreover, the output reflection (\(\hbox {S}_{22}\)) and reverse isolation (\(\hbox {S}_{12}\)), is below \(-\,10\) and \(-\,48\) dB, respectively for the ultra-wide band region. Apart from this, the minimum noise figure (\(\hbox {NF}_{min}\)) value of the proposed UWB LNA exists in the range of 2.1–3 dB for 3.1–10.6 GHz frequency range with a a small variation of \(\pm \,0.45\,\hbox {dB}\) in its \(\hbox {NF}_{min}\) characteristics. Linearity of the designed LNA is analysed in terms of third order input intercept point (IIP3) whose value is \(-\,4.22\) dBm, when a two tone signal is applied at 6 GHz with a spacing of 10 MHz. The other important benefits of the proposed circuit are its group-delay variation and gain variation of \(\pm \,115\,\hbox {ps}\) and \(\pm \,1.65\,\hbox {dB}\), respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Slimane, A., Trabelsi, M., & Belaroussi, M. T. (2011). A 0.9-V, 7-mW UWB LNA for 3.1–10.6 GHz wireless applications in \(0.18\,\upmu \text{ m }\) CMOS technology. Microelectronics Journal, 42(11), 1263–1268.CrossRef Slimane, A., Trabelsi, M., & Belaroussi, M. T. (2011). A 0.9-V, 7-mW UWB LNA for 3.1–10.6 GHz wireless applications in \(0.18\,\upmu \text{ m }\) CMOS technology. Microelectronics Journal, 42(11), 1263–1268.CrossRef
2.
Zurück zum Zitat Toofan, S., Rahmati, A. R., Abrishamifar, A., & Roientan Lahiji, G. (2008). Low power and high gain current reuse LNA with modified input matching and inter-stage inductors. Microelectronics Journal, 39(12), 1534–1537.CrossRef Toofan, S., Rahmati, A. R., Abrishamifar, A., & Roientan Lahiji, G. (2008). Low power and high gain current reuse LNA with modified input matching and inter-stage inductors. Microelectronics Journal, 39(12), 1534–1537.CrossRef
3.
Zurück zum Zitat Rastegar, H., Saryazdi, S., & Hakimi, A. (2012). Wideband and multiband CMOS LNAs: State-of-the-art and future prospects. Microelectronics Journal, 44(9), 774–786. Rastegar, H., Saryazdi, S., & Hakimi, A. (2012). Wideband and multiband CMOS LNAs: State-of-the-art and future prospects. Microelectronics Journal, 44(9), 774–786.
4.
Zurück zum Zitat Nakhlestani, A., et al. (2012). A novel configuration for UWB LNA suitable for low-power and low-voltage applications. Microelectronics Journal, 43(7), 444–451.CrossRef Nakhlestani, A., et al. (2012). A novel configuration for UWB LNA suitable for low-power and low-voltage applications. Microelectronics Journal, 43(7), 444–451.CrossRef
5.
Zurück zum Zitat Shim, J., Yang, T., & Jeong, J. (2013). Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique. Microelectronics Journal, 44(9), 821–826.CrossRef Shim, J., Yang, T., & Jeong, J. (2013). Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique. Microelectronics Journal, 44(9), 821–826.CrossRef
6.
Zurück zum Zitat Sapone, G., & Palmisano, G. (2011). A 3–10 GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Transactions on Microwave Theory Techniques, 59(3), 678–686.CrossRef Sapone, G., & Palmisano, G. (2011). A 3–10 GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Transactions on Microwave Theory Techniques, 59(3), 678–686.CrossRef
7.
Zurück zum Zitat Lu, Y., Yeo, K. S., Cabuk, A., Ma, J., Do, M. A., & Lu, Z. (2006). A novel CMOS low noise amplifier design for 3.1–10.6 GHz ultra-wide-band wireless receiver. IEEE Transactions on Circuits System I: Regular Papers, 53(8), 1683–1692.CrossRef Lu, Y., Yeo, K. S., Cabuk, A., Ma, J., Do, M. A., & Lu, Z. (2006). A novel CMOS low noise amplifier design for 3.1–10.6 GHz ultra-wide-band wireless receiver. IEEE Transactions on Circuits System I: Regular Papers, 53(8), 1683–1692.CrossRef
8.
Zurück zum Zitat Yang, H. Y., Lin, Y. S., & Chen, C. C. (2008). 2.5 dB NF 3.1–10.6 GHz CMOS UWB LNA with small group-delay variation. Electronics Letters, 44(8), 528–529.CrossRef Yang, H. Y., Lin, Y. S., & Chen, C. C. (2008). 2.5 dB NF 3.1–10.6 GHz CMOS UWB LNA with small group-delay variation. Electronics Letters, 44(8), 528–529.CrossRef
9.
Zurück zum Zitat Chen, C. C., & Wang, Y. C. (2013). 3.1–10.6 GHz ultra-wideband LNA design using dual-resonant broadband matching technique. AEU-International Journal of Electronics and Communications, 67(6), 500–503.CrossRef Chen, C. C., & Wang, Y. C. (2013). 3.1–10.6 GHz ultra-wideband LNA design using dual-resonant broadband matching technique. AEU-International Journal of Electronics and Communications, 67(6), 500–503.CrossRef
10.
Zurück zum Zitat Lee, J. H., Chen, C. C., & Lin, Y. S. (2007). \(0.18\,\upmu \text{ m }\) 3.1–10.6 GHz CMOS UWB LNA with \(11.4 \pm 0.4\,\text{ dB }\) gain and \(100.7 \pm 17.4\,\text{ ps }\) group-delay. Electronics Letters, 43(24), 1359–1360.CrossRef Lee, J. H., Chen, C. C., & Lin, Y. S. (2007). \(0.18\,\upmu \text{ m }\) 3.1–10.6 GHz CMOS UWB LNA with \(11.4 \pm 0.4\,\text{ dB }\) gain and \(100.7 \pm 17.4\,\text{ ps }\) group-delay. Electronics Letters, 43(24), 1359–1360.CrossRef
11.
Zurück zum Zitat Rastegar, H., Saryazdi, S., & Hakimi, A. (2013). A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in \(0.13\,\upmu \text{ m }\) CMOS process. Microelectronics Journal, 44(3), 201–209.CrossRef Rastegar, H., Saryazdi, S., & Hakimi, A. (2013). A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in \(0.13\,\upmu \text{ m }\) CMOS process. Microelectronics Journal, 44(3), 201–209.CrossRef
12.
Zurück zum Zitat Wan, Q., Wang, Q., & Zheng, Z. (2015). Design and analysis of a 3.1–10.6 GHz UWB low noise amplifier with forward body bias technique. AEU-International Journal of Electronics and Communications, 69, 119–125.CrossRef Wan, Q., Wang, Q., & Zheng, Z. (2015). Design and analysis of a 3.1–10.6 GHz UWB low noise amplifier with forward body bias technique. AEU-International Journal of Electronics and Communications, 69, 119–125.CrossRef
13.
Zurück zum Zitat Reiha, M.-T., & Long, J.-R. (2007). A 1.2 V reactive feedback 3.1–10.6 GHz low-noise amplifier in \(0.13\,\upmu \text{ m }\) CMOS. IEEE Journal of Solid State Circuits, 42(5), 1023–1033.CrossRef Reiha, M.-T., & Long, J.-R. (2007). A 1.2 V reactive feedback 3.1–10.6 GHz low-noise amplifier in \(0.13\,\upmu \text{ m }\) CMOS. IEEE Journal of Solid State Circuits, 42(5), 1023–1033.CrossRef
14.
Zurück zum Zitat Chang, J.-F., & Lin, Y.-S. (2009). 3–10 GHz low-power, low-noise CMOS distributed amplifier using splitting-load inductive peaking and noise-suppression techniques. Electronics Letters, 45(20), 78–81.CrossRef Chang, J.-F., & Lin, Y.-S. (2009). 3–10 GHz low-power, low-noise CMOS distributed amplifier using splitting-load inductive peaking and noise-suppression techniques. Electronics Letters, 45(20), 78–81.CrossRef
15.
Zurück zum Zitat Yan, S., & Sanchez-Sinencio, E. (2000). Low voltage analog circuit design techniques: A tutorial. IEICE Transactions on Analog Inegrated Circuits and Systems, 2, 1–17. Yan, S., & Sanchez-Sinencio, E. (2000). Low voltage analog circuit design techniques: A tutorial. IEICE Transactions on Analog Inegrated Circuits and Systems, 2, 1–17.
16.
Zurück zum Zitat Galup-Montoro, C., Schneider, M. C., & Loss, I. J. B. (1994). Series-parallel association of fet’s for high gain and high frequency applications. IEEE Journal of Solid-State Circuits, 29(9), 1094–1101.CrossRef Galup-Montoro, C., Schneider, M. C., & Loss, I. J. B. (1994). Series-parallel association of fet’s for high gain and high frequency applications. IEEE Journal of Solid-State Circuits, 29(9), 1094–1101.CrossRef
17.
Zurück zum Zitat Rajput, S. S., & Jamuar, S. S. (2002). Low voltage analog circuit design techniques. Circuits and Systems Magazine, 2(1), 24–42.CrossRef Rajput, S. S., & Jamuar, S. S. (2002). Low voltage analog circuit design techniques. Circuits and Systems Magazine, 2(1), 24–42.CrossRef
18.
Zurück zum Zitat Saxena, V., Balagopal, S., & Baker, R. J. (2011). Systematic design of three-stage op-amps using split-length compensation. In Proceedings of the IEEE 54th midwest symposium on circuits and systems (MWSCAS) (pp. 1–4). Saxena, V., Balagopal, S., & Baker, R. J. (2011). Systematic design of three-stage op-amps using split-length compensation. In Proceedings of the IEEE 54th midwest symposium on circuits and systems (MWSCAS) (pp. 1–4).
19.
Zurück zum Zitat Saxena, V., & Baker, R. J. (2008). Compensation of CMOS Op-amps using split-length transistors. In Proceedings of the IEEE 51st midwest symposium on circuits and systems (MWSCAS) (pp. 109–112). Saxena, V., & Baker, R. J. (2008). Compensation of CMOS Op-amps using split-length transistors. In Proceedings of the IEEE 51st midwest symposium on circuits and systems (MWSCAS) (pp. 109–112).
20.
Zurück zum Zitat Pepe, D., & Zito, D. (2009). 22.7-dB gain- 19.7-dBm \(\text{ ICP }_{1{\rm dB}}\) UWB CMOS LNA. IEEE Transactions on Circuits and Systems II, Express Briefs, 56(9), 689–693.CrossRef Pepe, D., & Zito, D. (2009). 22.7-dB gain- 19.7-dBm \(\text{ ICP }_{1{\rm dB}}\) UWB CMOS LNA. IEEE Transactions on Circuits and Systems II, Express Briefs, 56(9), 689–693.CrossRef
21.
Zurück zum Zitat Brederlow, R., Weber, W., Sauerer, J., Donnay, S., Wambacq, P., & Vertregt, M. (2001). A mixed-signal design roadmap. IEEE Design and Test of Computers, 18(6), 34–36.CrossRef Brederlow, R., Weber, W., Sauerer, J., Donnay, S., Wambacq, P., & Vertregt, M. (2001). A mixed-signal design roadmap. IEEE Design and Test of Computers, 18(6), 34–36.CrossRef
22.
Zurück zum Zitat Hsu, M.-T., Chang, Y.-C., & Huang, Y.-Z. (2013). Design of low power UWB LNA based on common source topology with current-reused technique. Microelectronics Journal, 44(12), 1223–1230.CrossRef Hsu, M.-T., Chang, Y.-C., & Huang, Y.-Z. (2013). Design of low power UWB LNA based on common source topology with current-reused technique. Microelectronics Journal, 44(12), 1223–1230.CrossRef
Metadaten
Titel
A 3.1–10.6 GHz UWB LNA Based on Self Cascode Technique for Improved Bandwidth and High Gain
verfasst von
Sunil Pandey
Tushar Gawande
P. N. Kondekar
Publikationsdatum
09.05.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5795-1

Weitere Artikel der Ausgabe 4/2018

Wireless Personal Communications 4/2018 Zur Ausgabe

Neuer Inhalt