Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2020

20.11.2019 | Research Paper

A deep learning–based method for the design of microstructural materials

verfasst von: Ren Kai Tan, Nevin L. Zhang, Wenjing Ye

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of applications. The design of such materials is challenged by the multifunctionality requirements and various constraints stemmed from manufacturing limitations and other practical considerations. Traditional design methods such as those based on topological optimization techniques rely heavily on high-dimensional physical simulations and can be inefficient. In addition, it is difficult to impose geometrical constraints in those methods. In this work, we propose a deep learning model based on deep convolutional generative adversarial network (DCGAN) and convolutional neural network (CNN) for the design of microstructural materials. The DCGAN is used to generate design candidates that satisfy geometrical constraints and the CNN is used as a surrogate model to link the microstructure to its properties. Once trained, the two networks are combined to form the design network which is utilized to for the inverse design. The advantages of the method include its high efficiency and the simplicity in handling geometrical constraints. In addition, no high-dimensional sensitivity simulations are required. The performance of the method is demonstrated on the design of microstructural materials with desired compliance tensor, subject to specified geometrical constraints.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdel-Hamid O, Mohamed AR, Jiang H, Penn G (2012) Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on (pp. 4277-4280). IEEE Abdel-Hamid O, Mohamed AR, Jiang H, Penn G (2012) Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on (pp. 4277-4280). IEEE
Zurück zum Zitat Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In International Conference on Machine Learning. pp. 214-223 Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In International Conference on Machine Learning. pp. 214-223
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural optimization 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural optimization 1(4):193–202CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654MATHCrossRef Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654MATHCrossRef
Zurück zum Zitat Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667MathSciNetMATHCrossRef Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667MathSciNetMATHCrossRef
Zurück zum Zitat Cang R, Li H, Yao H, Jiao Y, Ren Y (2018) Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model. Comput Mater Sci 150:212–221CrossRef Cang R, Li H, Yao H, Jiao Y, Ren Y (2018) Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model. Comput Mater Sci 150:212–221CrossRef
Zurück zum Zitat Chen W, Jeyaseelan A, Fuge M (2018) Synthesizing designs with inter-part dependencies using hierarchical generative adversarial networks. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Quebec City, Canada Chen W, Jeyaseelan A, Fuge M (2018) Synthesizing designs with inter-part dependencies using hierarchical generative adversarial networks. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Quebec City, Canada
Zurück zum Zitat Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5(6) Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5(6)
Zurück zum Zitat Goodfellow I et al. (2014) Generative adversarial nets. In Advances in neural information processing systems: 2672-2680 Goodfellow I et al. (2014) Generative adversarial nets. In Advances in neural information processing systems: 2672-2680
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009CrossRef Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009CrossRef
Zurück zum Zitat Guo T, Lohan DJ, Cang R, Ren MY, Allison JT (2018) An indirect design representation for topology optimization using variational autoencoder and style transfer. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2018, p. 0804 Guo T, Lohan DJ, Cang R, Ren MY, Allison JT (2018) An indirect design representation for topology optimization using variational autoencoder and style transfer. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2018, p. 0804
Zurück zum Zitat Gupta A, Cecen A, Goyal S, Singh AK, Kalidindi SR (2015) Structure–property linkages using a data science approach: application to a non-metallic inclusion/steel composite system. Acta Mater 91:239–254CrossRef Gupta A, Cecen A, Goyal S, Singh AK, Kalidindi SR (2015) Structure–property linkages using a data science approach: application to a non-metallic inclusion/steel composite system. Acta Mater 91:239–254CrossRef
Zurück zum Zitat Hu X, Shen Y, Liu X, Fu R, Zi J (2004) Superlensing effect in liquid surface waves. Phys Rev E 69:030201CrossRef Hu X, Shen Y, Liu X, Fu R, Zi J (2004) Superlensing effect in liquid surface waves. Phys Rev E 69:030201CrossRef
Zurück zum Zitat Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
Zurück zum Zitat Kodali N, Abernethy J, Hays J, Kira Z (2017) How to train your DRAGAN. arXiv preprint arXiv:1705.07215, 2(4) Kodali N, Abernethy J, Hays J, Kira Z (2017) How to train your DRAGAN. arXiv preprint arXiv:1705.07215, 2(4)
Zurück zum Zitat Krish S (2011) A practical generative design method. Comput Aided Des 43(1):88–100CrossRef Krish S (2011) A practical generative design method. Comput Aided Des 43(1):88–100CrossRef
Zurück zum Zitat Krizhevsky A, Hinton G (2010) Convolutional deep belief networks on cifar-10. Unpublished manuscript, 40(7) Krizhevsky A, Hinton G (2010) Convolutional deep belief networks on cifar-10. Unpublished manuscript, 40(7)
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097-1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097-1105
Zurück zum Zitat Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1-2):189–218CrossRef Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1-2):189–218CrossRef
Zurück zum Zitat LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems, pp. 396-404 LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems, pp. 396-404
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
Zurück zum Zitat Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In CVPR Vol. 2, No. 3, p. 4 Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In CVPR Vol. 2, No. 3, p. 4
Zurück zum Zitat Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework. J Appl Mech 86(1):011004CrossRef Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework. J Appl Mech 86(1):011004CrossRef
Zurück zum Zitat Li X, Yang Z, Brinson LC, Choudhary A, Agrawal A, Chen W (2018a) A deep adversarial learning methodology for designing microstructural material systems. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2018, Paper No. DETC2018-85633, pp. V02BT03A008. American Society of Mechanical Engineers Li X, Yang Z, Brinson LC, Choudhary A, Agrawal A, Chen W (2018a) A deep adversarial learning methodology for designing microstructural material systems. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2018, Paper No. DETC2018-85633, pp. V02BT03A008. American Society of Mechanical Engineers
Zurück zum Zitat Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018b) A transfer learning approach for microstructure reconstruction and structure-property predictions. Scientific reports, 8 Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018b) A transfer learning approach for microstructure reconstruction and structure-property predictions. Scientific reports, 8
Zurück zum Zitat Liang B, Guo XS, Tu J, Zhang D, Chen JC (2010) An acoustic rectifier. Nat Mater 9:989–992CrossRef Liang B, Guo XS, Tu J, Zhang D, Chen JC (2010) An acoustic rectifier. Nat Mater 9:989–992CrossRef
Zurück zum Zitat Liu R, Yabansu YC, Agrawal A, Kalidindi SR, Choudhary AN (2015) Machine learning approaches for elastic localization linkages in high-contrast composite materials. Integrating Materials and Manufacturing Innovation 4(1):13CrossRef Liu R, Yabansu YC, Agrawal A, Kalidindi SR, Choudhary AN (2015) Machine learning approaches for elastic localization linkages in high-contrast composite materials. Integrating Materials and Manufacturing Innovation 4(1):13CrossRef
Zurück zum Zitat Liu Q, Zhang N, Yang W, Wang S, Cui Z, Chen X, Chen L (2017) A review of image recognition with deep convolutional neural network. In International Conference on Intelligent Computing (pp. 69-80). Springer, Cham Liu Q, Zhang N, Yang W, Wang S, Cui Z, Chen X, Chen L (2017) A review of image recognition with deep convolutional neural network. In International Conference on Intelligent Computing (pp. 69-80). Springer, Cham
Zurück zum Zitat Lohan DJ, Dede EM, Allison JT (2017) Topology optimization for heat conduction using generative design algorithms. Struct Multidiscip Optim 55(3):1063–1077MathSciNetCrossRef Lohan DJ, Dede EM, Allison JT (2017) Topology optimization for heat conduction using generative design algorithms. Struct Multidiscip Optim 55(3):1063–1077MathSciNetCrossRef
Zurück zum Zitat Mao X, Li Q, Xie H, Lau RY, Wang Z, Smolley SP (2017) Least squares generative adversarial networks. In Computer Vision (ICCV), 2017 IEEE International Conference on (pp. 2813-2821). IEEE Mao X, Li Q, Xie H, Lau RY, Wang Z, Smolley SP (2017) Least squares generative adversarial networks. In Computer Vision (ICCV), 2017 IEEE International Conference on (pp. 2813-2821). IEEE
Zurück zum Zitat Martin GL (1993) Centered-object integrated segmentation and recognition of overlapping handprinted characters. Neural Comput 5(3):419–429CrossRef Martin GL (1993) Centered-object integrated segmentation and recognition of overlapping handprinted characters. Neural Comput 5(3):419–429CrossRef
Zurück zum Zitat McDowell DL, Olson GB (2008) Concurrent design of hierarchical materials and structures. Scientific Modeling and Simulations. Springer, Dordrecht, pp 207–240CrossRef McDowell DL, Olson GB (2008) Concurrent design of hierarchical materials and structures. Scientific Modeling and Simulations. Springer, Dordrecht, pp 207–240CrossRef
Zurück zum Zitat Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784
Zurück zum Zitat Nakshatrala P, Tortorelli D (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326MathSciNetMATHCrossRef Nakshatrala P, Tortorelli D (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326MathSciNetMATHCrossRef
Zurück zum Zitat Osher SJ, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum. J Comput Phys 171(1):272–288MathSciNetMATHCrossRef Osher SJ, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum. J Comput Phys 171(1):272–288MathSciNetMATHCrossRef
Zurück zum Zitat Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
Zurück zum Zitat Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396
Zurück zum Zitat Rong J, Ye W (2019) Topology optimization design scheme for broadband non-resonant hyperbolic elastic metamaterials. Comput Methods Appl Mech Eng 344:819–836MathSciNetMATHCrossRef Rong J, Ye W (2019) Topology optimization design scheme for broadband non-resonant hyperbolic elastic metamaterials. Comput Methods Appl Mech Eng 344:819–836MathSciNetMATHCrossRef
Zurück zum Zitat Sosnovik I, Oseledets I (2017) Neural networks for topology optimization. arXiv preprint arXiv:1709.09578 Sosnovik I, Oseledets I (2017) Neural networks for topology optimization. arXiv preprint arXiv:1709.09578
Zurück zum Zitat Vaz L, Hinton E (1995) FE-shape sensitivity of elastoplastic response. Struct Multidiscip Optim 10(3):231–238CrossRef Vaz L, Hinton E (1995) FE-shape sensitivity of elastoplastic response. Struct Multidiscip Optim 10(3):231–238CrossRef
Zurück zum Zitat Villanueva CH, Maute K (2017) CutFEM topology optimization of 3D laminar incompressible flow problems. Comput Methods Appl Mech Eng 320:444–473MathSciNetMATHCrossRef Villanueva CH, Maute K (2017) CutFEM topology optimization of 3D laminar incompressible flow problems. Comput Methods Appl Mech Eng 320:444–473MathSciNetMATHCrossRef
Zurück zum Zitat Wang SC (2003) Artificial neural network. In: Interdisciplinary computing in java programming. Springer, Boston, pp 81–100CrossRef Wang SC (2003) Artificial neural network. In: Interdisciplinary computing in java programming. Springer, Boston, pp 81–100CrossRef
Zurück zum Zitat Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090MathSciNetMATHCrossRef Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090MathSciNetMATHCrossRef
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246MathSciNetMATHCrossRef Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246MathSciNetMATHCrossRef
Zurück zum Zitat Yan F, Chan YC, Saboo A, Shah J, Olson GB, Chen W (2018) Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys. Comput Model Eng Sci:343–366 Yan F, Chan YC, Saboo A, Shah J, Olson GB, Chen W (2018) Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys. Comput Model Eng Sci:343–366
Zurück zum Zitat Yang Z, Dai HM, Chan NH, Ma GC, Sheng P (2010) Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime. Appl Phys Lett 96:041906CrossRef Yang Z, Dai HM, Chan NH, Ma GC, Sheng P (2010) Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime. Appl Phys Lett 96:041906CrossRef
Zurück zum Zitat Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidiscip Optim 59(3):787–799 Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidiscip Optim 59(3):787–799
Zurück zum Zitat Zeiler MD, Fergus R (2013) Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557 Zeiler MD, Fergus R (2013) Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557
Zurück zum Zitat Zhang Y, Ye W (2018) Deep learning based inverse method for layout design. Structural and Multidisciplinary Optimization: 1-10 Zhang Y, Ye W (2018) Deep learning based inverse method for layout design. Structural and Multidisciplinary Optimization: 1-10
Zurück zum Zitat Zhang W, Zhou Y, Zhu J (2017) A comprehensive study of feature definitions with solids and voids for topology optimization. Comput Methods Appl Mech Eng 325:289–313MathSciNetMATHCrossRef Zhang W, Zhou Y, Zhu J (2017) A comprehensive study of feature definitions with solids and voids for topology optimization. Comput Methods Appl Mech Eng 325:289–313MathSciNetMATHCrossRef
Zurück zum Zitat Zhao J, Mathieu M, LeCun Y (2016) Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 Zhao J, Mathieu M, LeCun Y (2016) Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126
Zurück zum Zitat Zhou Y, Zhang W, Zhu J, Xu Z (2016) Feature-driven topology optimization method with signed distance function. Comput Methods Appl Mech Eng 310:1–32MathSciNetMATHCrossRef Zhou Y, Zhang W, Zhu J, Xu Z (2016) Feature-driven topology optimization method with signed distance function. Comput Methods Appl Mech Eng 310:1–32MathSciNetMATHCrossRef
Zurück zum Zitat Zhu R, Liu XN, Hu GK, Sun CT, Huang GL (2014) Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterials. Nat Commun 5:5510CrossRef Zhu R, Liu XN, Hu GK, Sun CT, Huang GL (2014) Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterials. Nat Commun 5:5510CrossRef
Metadaten
Titel
A deep learning–based method for the design of microstructural materials
verfasst von
Ren Kai Tan
Nevin L. Zhang
Wenjing Ye
Publikationsdatum
20.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-019-02424-2

Weitere Artikel der Ausgabe 4/2020

Structural and Multidisciplinary Optimization 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.