Skip to main content
Erschienen in: Neural Computing and Applications 24/2020

30.04.2020 | Original Article

A deep wavelet sparse autoencoder method for online and automatic electrooculographical artifact removal

verfasst von: Hoang-Anh The Nguyen, Thanh Ha Le, The Duy Bui

Erschienen in: Neural Computing and Applications | Ausgabe 24/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrooculographical (EOG) artifacts are problematic to electroencephalographical (EEG) signal analysis and degrade performance of brain–computer interfaces. A novel, robust deep wavelet sparse autoencoder (DWSAE) method is presented and validated for fully automated EOG artifact removal. DWSAE takes advantage of wavelet transform and sparse autoencoder to become a universal EOG artifact corrector. After being trained without supervision, the sparse autoencoder performs EOG correction on time–frequency coefficients collected after brain wave signal wavelet decomposition. Corrected coefficients are then used for wavelet reconstruction of uncontaminated EEG signals. DWSAE is compared with five other methods: second-order blind identification, information maximization, joint approximation diagonalization of eigen-matrices, wavelet neural network (WNN) and wavelet thresholding (WT). Experimental results on a visual attention task dataset, a mental state recognition dataset and a semi-simulated contaminated EEG dataset show that DWSAE is capable of suppressing EOG artifacts effectively, while preserving the nature of background EEG signals. The mean square error of signals before and after correction by DWSAE on a semi-simulated contaminated EEG segment of 30 s is the lowest (65.62) when compared to the results produced by WNN and WT. DWSAE addresses limitations posed by these methods in three ways. First, DWSAE can be performed automatically and online in a single channel of EEG data; this has advantages over independent component analysis-based methods. Second, its results are robust and stable in comparison with those of other wavelet-based methods. Third, as an unsupervised learning scheme, DWSAE does not require the off-line training that is necessary for WNN and other supervised learning machine learning-based methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McFarland DJ, Wolpaw JR (2017) EEG-based brain–computer interfaces. Curr Opin Biomed Eng 4:194–200CrossRef McFarland DJ, Wolpaw JR (2017) EEG-based brain–computer interfaces. Curr Opin Biomed Eng 4:194–200CrossRef
2.
Zurück zum Zitat Ramadan RA, Vasilakos AV (2017) Brain computer interface: control signals review. Neurocomputing 223:26–44CrossRef Ramadan RA, Vasilakos AV (2017) Brain computer interface: control signals review. Neurocomputing 223:26–44CrossRef
3.
Zurück zum Zitat Naseer N, Hong KS (2015) fNIRS-based brain-computer interfaces: a review. Front Human Neurosci 9:3 Naseer N, Hong KS (2015) fNIRS-based brain-computer interfaces: a review. Front Human Neurosci 9:3
4.
Zurück zum Zitat Zhang R, Li Y, Yan Y, Zhang H, Wu S, Yu T, Gu Z (2016) Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng 24(1):128–139CrossRef Zhang R, Li Y, Yan Y, Zhang H, Wu S, Yu T, Gu Z (2016) Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng 24(1):128–139CrossRef
5.
Zurück zum Zitat Lalor EC, Kelly SP, Finucane C, Burke R, Smith R, Reilly RB, Mcdarby G (2005) Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP J Appl Sig Process 1(2005):3156–3164MATH Lalor EC, Kelly SP, Finucane C, Burke R, Smith R, Reilly RB, Mcdarby G (2005) Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP J Appl Sig Process 1(2005):3156–3164MATH
6.
Zurück zum Zitat Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser C, Schwartz NE, Vaughan TM, Wolpaw JR, Sellers EW (2010) A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121(7):1109–1120CrossRef Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser C, Schwartz NE, Vaughan TM, Wolpaw JR, Sellers EW (2010) A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121(7):1109–1120CrossRef
7.
Zurück zum Zitat Loo SK, Lenartowicz A, Makeig S (2016) Research review: use of EEG biomarkers in child psychiatry research–current state and future directions. J Child Psychol Psychiatry 57(1):4–17CrossRef Loo SK, Lenartowicz A, Makeig S (2016) Research review: use of EEG biomarkers in child psychiatry research–current state and future directions. J Child Psychol Psychiatry 57(1):4–17CrossRef
8.
Zurück zum Zitat Vaid S, Singh P, Kaur C (2015) EEG signal analysis for BCI interface: a review. In: 2015 Fifth international conference on advanced computing & communication technologies (ACCT), pp 143–147 Vaid S, Singh P, Kaur C (2015) EEG signal analysis for BCI interface: a review. In: 2015 Fifth international conference on advanced computing & communication technologies (ACCT), pp 143–147
9.
Zurück zum Zitat Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88(1):220–235CrossRef Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88(1):220–235CrossRef
10.
Zurück zum Zitat Urigüen JA, Garcia-Zapirain B (2015) EEG artifact removal—state-of-the-art and guidelines. J Neural Eng 12(3):031001CrossRef Urigüen JA, Garcia-Zapirain B (2015) EEG artifact removal—state-of-the-art and guidelines. J Neural Eng 12(3):031001CrossRef
11.
Zurück zum Zitat Maddirala AK, Shaik RA (2016) Removal of EOG artifacts from single channel EEG signals using combined singular spectrum analysis and adaptive noise canceler. IEEE Sens J 16(23):8279–8287 Maddirala AK, Shaik RA (2016) Removal of EOG artifacts from single channel EEG signals using combined singular spectrum analysis and adaptive noise canceler. IEEE Sens J 16(23):8279–8287
12.
Zurück zum Zitat Hagemann D, Naumann E (2001) The effects of ocular artifacts on (lateralized) broadband power in the EEG. Clin Neurophysiol 112(2):215–231CrossRef Hagemann D, Naumann E (2001) The effects of ocular artifacts on (lateralized) broadband power in the EEG. Clin Neurophysiol 112(2):215–231CrossRef
13.
Zurück zum Zitat Krishnaveni V, Jayaraman S, Aravind S, Hariharasudhan V, Ramadoss K (2006) Automatic identification and removal of ocular artifacts from EEG using wavelet transform. Meas Sci Rev 6(4):45–57 Krishnaveni V, Jayaraman S, Aravind S, Hariharasudhan V, Ramadoss K (2006) Automatic identification and removal of ocular artifacts from EEG using wavelet transform. Meas Sci Rev 6(4):45–57
14.
Zurück zum Zitat Li X, Guan C, Zhang H, Ang KK (2017) Discriminative ocular artifact correction for feature learning in EEG analysis. IEEE Trans Biomed Eng 64(8):1906–1913CrossRef Li X, Guan C, Zhang H, Ang KK (2017) Discriminative ocular artifact correction for feature learning in EEG analysis. IEEE Trans Biomed Eng 64(8):1906–1913CrossRef
15.
Zurück zum Zitat Yang B, Duan K, Fan C, Hu C, Wang J (2018) Automatic ocular artifacts removal in EEG using deep learning. Biomed Signal Process Control 43:148–158CrossRef Yang B, Duan K, Fan C, Hu C, Wang J (2018) Automatic ocular artifacts removal in EEG using deep learning. Biomed Signal Process Control 43:148–158CrossRef
16.
Zurück zum Zitat Fatourechi M, Bashashati A, Ward RK, Birch GE (2007) EMG and EOG artifacts in brain computer interface systems: a survey. Clin Neurophysiol 118(3):480–494CrossRef Fatourechi M, Bashashati A, Ward RK, Birch GE (2007) EMG and EOG artifacts in brain computer interface systems: a survey. Clin Neurophysiol 118(3):480–494CrossRef
17.
Zurück zum Zitat Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA (2007) EEG differences between eyes-closed and eyes-open resting conditions. Clin Neurophysiol 118:2765–2773CrossRef Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA (2007) EEG differences between eyes-closed and eyes-open resting conditions. Clin Neurophysiol 118:2765–2773CrossRef
18.
Zurück zum Zitat Islam MK, Rastegarnia A, Yang Z (2016) Methods for artifact detection and removal from scalp EEG: a review. Neurophysiol Clin Clin Neurophysiol 46(4–5):287–305CrossRef Islam MK, Rastegarnia A, Yang Z (2016) Methods for artifact detection and removal from scalp EEG: a review. Neurophysiol Clin Clin Neurophysiol 46(4–5):287–305CrossRef
19.
Zurück zum Zitat Jung TP, Makeig S, Humphries C, Lee TW, Mckeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(2):163–178CrossRef Jung TP, Makeig S, Humphries C, Lee TW, Mckeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(2):163–178CrossRef
20.
Zurück zum Zitat Krishnaveni V, Jayaraman S, Anitha L, Ramadoss K (2006) Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients. J Neural Eng 3(4):338CrossRef Krishnaveni V, Jayaraman S, Anitha L, Ramadoss K (2006) Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients. J Neural Eng 3(4):338CrossRef
21.
Zurück zum Zitat Nguyen HAT, Musson J, Li F, Wang W, Zhang G, Xu R, Richey C, Schnell T, McKenzie FD, Li J (2012) EOG artifact removal using a wavelet neural network. Neurocomputing 97:374–389CrossRef Nguyen HAT, Musson J, Li F, Wang W, Zhang G, Xu R, Richey C, Schnell T, McKenzie FD, Li J (2012) EOG artifact removal using a wavelet neural network. Neurocomputing 97:374–389CrossRef
22.
Zurück zum Zitat Minguillon J, Lopez-Gordo MA, Pelayo F (2017) Trends in EEG-BCI for daily-life: requirements for artifact removal. Biomed Signal Process Control 31(31):407–418CrossRef Minguillon J, Lopez-Gordo MA, Pelayo F (2017) Trends in EEG-BCI for daily-life: requirements for artifact removal. Biomed Signal Process Control 31(31):407–418CrossRef
23.
Zurück zum Zitat Dursun M, Özşen S, Yücelbaş C, Yücelbaş Ş, Tezel G, Küççüktürk S, Yosunkaya Ş (2017) A new approach to eliminating EOG artifacts from the sleep EEG signals for the automatic sleep stage classification. Neural Comput Appl 28(10):3095–3112CrossRef Dursun M, Özşen S, Yücelbaş C, Yücelbaş Ş, Tezel G, Küççüktürk S, Yosunkaya Ş (2017) A new approach to eliminating EOG artifacts from the sleep EEG signals for the automatic sleep stage classification. Neural Comput Appl 28(10):3095–3112CrossRef
24.
Zurück zum Zitat Gao J, Lin P, Yang Y, Wang P, Zheng C (2010) Real-time removal of ocular artifacts from EEG based on independent component analysis and manifold learning. Neural Comput Appl 19(8):1217–1226CrossRef Gao J, Lin P, Yang Y, Wang P, Zheng C (2010) Real-time removal of ocular artifacts from EEG based on independent component analysis and manifold learning. Neural Comput Appl 19(8):1217–1226CrossRef
25.
Zurück zum Zitat Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layerwise training of deep networks. In: Proc. NIPS, Vancouver Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layerwise training of deep networks. In: Proc. NIPS, Vancouver
26.
Zurück zum Zitat Goodfellow I, Le Q, Saxe A, Lee H, Ng A (2009) Measuring invariances in deep networks. In: Proc. NIPS, Vancouver, pp 646–654 Goodfellow I, Le Q, Saxe A, Lee H, Ng A (2009) Measuring invariances in deep networks. In: Proc. NIPS, Vancouver, pp 646–654
27.
Zurück zum Zitat Turnip A (2015) Comparison of ICA-based JADE and SOBI methods EOG artifacts removal. J Med Bioeng 4(6):436–440 Turnip A (2015) Comparison of ICA-based JADE and SOBI methods EOG artifacts removal. J Med Bioeng 4(6):436–440
28.
Zurück zum Zitat Belouchrani A, Abed-Meraim K, Cardoso JF, Moulines E (1997) A blind source separation technique using second-order statistics. IEEE Trans Signal Process 45(2):434–444CrossRef Belouchrani A, Abed-Meraim K, Cardoso JF, Moulines E (1997) A blind source separation technique using second-order statistics. IEEE Trans Signal Process 45(2):434–444CrossRef
29.
Zurück zum Zitat Tang AC, Sutherland MT, McKinney CJ (2005) Validation of SOBI components from high-density EEG. NeuroImage 25(2):539–553CrossRef Tang AC, Sutherland MT, McKinney CJ (2005) Validation of SOBI components from high-density EEG. NeuroImage 25(2):539–553CrossRef
30.
Zurück zum Zitat Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159CrossRef Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159CrossRef
31.
Zurück zum Zitat He T, Clifford G, Tarassenko L (2006) Application of independent component analysis in removing artefacts from the electrocardiogram. Neural Comput Appl 15(2):105–116CrossRef He T, Clifford G, Tarassenko L (2006) Application of independent component analysis in removing artefacts from the electrocardiogram. Neural Comput Appl 15(2):105–116CrossRef
32.
Zurück zum Zitat Zeng N, Zhang H, Song B, Liu W, Li Y, Dobaie AM (2018) Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273:643–649CrossRef Zeng N, Zhang H, Song B, Liu W, Li Y, Dobaie AM (2018) Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273:643–649CrossRef
33.
Zurück zum Zitat Wang YB, You ZH, Li X, Jiang TH, Chen X, Zhou X, Wang L (2017) Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol BioSyst 13(7):1336–1344CrossRef Wang YB, You ZH, Li X, Jiang TH, Chen X, Zhou X, Wang L (2017) Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol BioSyst 13(7):1336–1344CrossRef
34.
Zurück zum Zitat Cho K (2013) Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images. In: International conference on machine learning, pp 432–440 Cho K (2013) Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images. In: International conference on machine learning, pp 432–440
35.
Zurück zum Zitat Yang J, Bai Y, Li G, Liu M, Liu X (2015) A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression. Bio-Med Mater Eng 26(s1):S1549–S1558CrossRef Yang J, Bai Y, Li G, Liu M, Liu X (2015) A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression. Bio-Med Mater Eng 26(s1):S1549–S1558CrossRef
36.
Zurück zum Zitat Qiu Y, Zhou W, Yu N, Du P (2018) Denoising sparse autoencoder-based ictal eeg classification. IEEE Trans Neural Syst Rehabil Eng 26(9):1717–1726 Qiu Y, Zhou W, Yu N, Du P (2018) Denoising sparse autoencoder-based ictal eeg classification. IEEE Trans Neural Syst Rehabil Eng 26(9):1717–1726
37.
Zurück zum Zitat Zhang L, Ma W, Zhang D (2016) Stacked sparse autoencoder in PolSAR data classification using local spatial information. IEEE Geosci Remote Sens Lett 13(9):1359–1363CrossRef Zhang L, Ma W, Zhang D (2016) Stacked sparse autoencoder in PolSAR data classification using local spatial information. IEEE Geosci Remote Sens Lett 13(9):1359–1363CrossRef
38.
Zurück zum Zitat Zhu C, Byrd RH, Lu P, Nocedal J (1997) Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans Math Softw (TOMS) 23(4):550–560MathSciNetCrossRef Zhu C, Byrd RH, Lu P, Nocedal J (1997) Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans Math Softw (TOMS) 23(4):550–560MathSciNetCrossRef
39.
Zurück zum Zitat Daubechies I (1992) Ten lectures on wavelets, vol 61. Siam, PhiladelphiaCrossRef Daubechies I (1992) Ten lectures on wavelets, vol 61. Siam, PhiladelphiaCrossRef
40.
Zurück zum Zitat Yu C, Manry MT, Li J, Narasimha PL (2006) An efficient hidden layer training method for the multilayer perceptron. Neurocomputing 70(1–3):525–535CrossRef Yu C, Manry MT, Li J, Narasimha PL (2006) An efficient hidden layer training method for the multilayer perceptron. Neurocomputing 70(1–3):525–535CrossRef
Metadaten
Titel
A deep wavelet sparse autoencoder method for online and automatic electrooculographical artifact removal
verfasst von
Hoang-Anh The Nguyen
Thanh Ha Le
The Duy Bui
Publikationsdatum
30.04.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 24/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04953-0

Weitere Artikel der Ausgabe 24/2020

Neural Computing and Applications 24/2020 Zur Ausgabe

Premium Partner