Skip to main content
Erschienen in: Acta Mechanica Sinica 6/2018

21.09.2018 | Research Paper

A general metrology of stress on crystalline silicon with random crystal plane by using micro-Raman spectroscopy

verfasst von: Wei Qiu, Lulu Ma, Qiu Li, Huadan Xing, Cuili Cheng, Ganyun Huang

Erschienen in: Acta Mechanica Sinica | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The requirement of stress analysis and measurement is increasing with the great development of heterogeneous structures and strain engineering in the field of semiconductors. Micro-Raman spectroscopy is an effective method for the measurement of intrinsic stress in semiconductor structures. However, most existing applications of Raman-stress measurement use the classical model established on the (001) crystal plane. A non-negligible error may be introduced when the Raman data are detected on surfaces/cross-sections of different crystal planes. Owing to crystal symmetry, the mechanical, physical and optical parameters of different crystal planes show obvious anisotropy, leading to the Raman-mechanical relationship dissimilarity on the different crystal planes. In this work, a general model of stress measurement on crystalline silicon with an arbitrary crystal plane was presented based on the elastic mechanics, the lattice dynamics and the Raman selection rule. The wavenumber-stress factor that is determined by the proposed method is suitable for the measured crystal plane. Detailed examples for some specific crystal planes were provided and the theoretical results were verified by experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kiefer, W.: Recent advances in linear and nonlinear Raman spectroscopy I. J. Raman Spectrosc. 38, 1538–1553 (2007)CrossRef Kiefer, W.: Recent advances in linear and nonlinear Raman spectroscopy I. J. Raman Spectrosc. 38, 1538–1553 (2007)CrossRef
2.
Zurück zum Zitat Zhang, S.L.: Raman Spectroscopy and Its Application in Nanostructures. Wiley, New York (2012)CrossRef Zhang, S.L.: Raman Spectroscopy and Its Application in Nanostructures. Wiley, New York (2012)CrossRef
3.
Zurück zum Zitat Kraft, O., Hommel, M., Arzt, E.: X-ray diffraction as a tool to study the mechanical behaviour of thin films. Mater. Sci. Eng., A 288, 209–216 (2000)CrossRef Kraft, O., Hommel, M., Arzt, E.: X-ray diffraction as a tool to study the mechanical behaviour of thin films. Mater. Sci. Eng., A 288, 209–216 (2000)CrossRef
4.
Zurück zum Zitat Qiu, W., Cheng, C.L., Liang, R.R., et al.: Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy. Acta. Mech. Sin. 32, 805–812 (2016)CrossRef Qiu, W., Cheng, C.L., Liang, R.R., et al.: Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy. Acta. Mech. Sin. 32, 805–812 (2016)CrossRef
5.
Zurück zum Zitat Sirleto, L., Vergara, A., Ferrara, M.A.: Advances in stimulated Raman scattering in nanostructures. Adv. Opt. Photon. 9, 169–217 (2017)CrossRef Sirleto, L., Vergara, A., Ferrara, M.A.: Advances in stimulated Raman scattering in nanostructures. Adv. Opt. Photon. 9, 169–217 (2017)CrossRef
6.
Zurück zum Zitat Hu, P.P., Liu, J., Zhang, S.X., et al.: Raman investigation of lattice defects and stress induced in InP and GaN films by swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 372, 29–37 (2016)CrossRef Hu, P.P., Liu, J., Zhang, S.X., et al.: Raman investigation of lattice defects and stress induced in InP and GaN films by swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 372, 29–37 (2016)CrossRef
7.
Zurück zum Zitat Qiu, W., Ma, L.L., Xing, H.D., et al.: Spectral characteristics of (111) silicon with Raman selections under different states of stress. AIP Adv. 7, 075002 (2017)CrossRef Qiu, W., Ma, L.L., Xing, H.D., et al.: Spectral characteristics of (111) silicon with Raman selections under different states of stress. AIP Adv. 7, 075002 (2017)CrossRef
8.
Zurück zum Zitat Liu, W., Li, Q., Jin, G., et al.: Measurement of the Euler angles of wurtzitic ZnO by Raman spectroscopy. J. Spectrosc. 8, 1–9 (2017) Liu, W., Li, Q., Jin, G., et al.: Measurement of the Euler angles of wurtzitic ZnO by Raman spectroscopy. J. Spectrosc. 8, 1–9 (2017)
9.
Zurück zum Zitat Zhang, Z., Sheng, S., Wang, R., et al.: Tip-enhanced raman spectroscopy. Anal. Chem. 88, 9328–9346 (2016)CrossRef Zhang, Z., Sheng, S., Wang, R., et al.: Tip-enhanced raman spectroscopy. Anal. Chem. 88, 9328–9346 (2016)CrossRef
10.
Zurück zum Zitat Srikar, V.T., Spearing, S.M.: A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems. Exp. Mech. 43, 238–247 (2003)CrossRef Srikar, V.T., Spearing, S.M.: A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems. Exp. Mech. 43, 238–247 (2003)CrossRef
11.
Zurück zum Zitat Webster, S., Smith, D., Batchelder, D.: Raman microscopy using a scanning near-field optical probe. Vib. Spectrosc. 18, 51–59 (1998)CrossRef Webster, S., Smith, D., Batchelder, D.: Raman microscopy using a scanning near-field optical probe. Vib. Spectrosc. 18, 51–59 (1998)CrossRef
12.
Zurück zum Zitat Loudon, R.: The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964)CrossRef Loudon, R.: The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964)CrossRef
13.
Zurück zum Zitat Ganesan, S., Maradudin, A.A., Oitmaa, J.: A lattice theory of morphic effects in crystals of the diamond structure. Ann. Phys. 56, 556–594 (1970)CrossRef Ganesan, S., Maradudin, A.A., Oitmaa, J.: A lattice theory of morphic effects in crystals of the diamond structure. Ann. Phys. 56, 556–594 (1970)CrossRef
14.
Zurück zum Zitat Anastassakis, E., Pinczuk, A., Burstein, E., et al.: Effect of static uniaxal stress on the Raman spectrum of silicon. Solid State Commun. 88, 1053–1058 (1993)CrossRef Anastassakis, E., Pinczuk, A., Burstein, E., et al.: Effect of static uniaxal stress on the Raman spectrum of silicon. Solid State Commun. 88, 1053–1058 (1993)CrossRef
15.
Zurück zum Zitat Anastassakis, E.: Strain characterization of polycrystalline diamond and silicon systems. J. Appl. Phys. 86, 249–258 (1999)CrossRef Anastassakis, E.: Strain characterization of polycrystalline diamond and silicon systems. J. Appl. Phys. 86, 249–258 (1999)CrossRef
16.
Zurück zum Zitat Demangeot, F., Frandon, J., Renucci, M.A., et al.: Raman determination of phonon deformation potentials in α-GaN. Solid State Commun. 100, 207–210 (1996)CrossRef Demangeot, F., Frandon, J., Renucci, M.A., et al.: Raman determination of phonon deformation potentials in α-GaN. Solid State Commun. 100, 207–210 (1996)CrossRef
17.
Zurück zum Zitat Perova, T.S., Wasyluk, J., Lyutovich, K., et al.: Composition and strain in thin Si1−XGeX virtual substrates measured by micro-Raman spectroscopy and X-ray diffraction. J. Appl. Phys. 109, 33502 (2011)CrossRef Perova, T.S., Wasyluk, J., Lyutovich, K., et al.: Composition and strain in thin Si1−XGeX virtual substrates measured by micro-Raman spectroscopy and X-ray diffraction. J. Appl. Phys. 109, 33502 (2011)CrossRef
18.
Zurück zum Zitat De Wolf, I., Jian, C., Van Spengen, W.M.: The investigation of microsystems using Raman spectroscopy. Opt. Lasers Eng. 36, 213–223 (2001)CrossRef De Wolf, I., Jian, C., Van Spengen, W.M.: The investigation of microsystems using Raman spectroscopy. Opt. Lasers Eng. 36, 213–223 (2001)CrossRef
19.
Zurück zum Zitat Qian, J., Yu, T.X., Zhao, Y.P.: Two-dimensional stress measurement of a micromachined piezoresistive structure with micro-Raman spectroscopy. Microsyst. Technol. 11, 97–103 (2005)CrossRef Qian, J., Yu, T.X., Zhao, Y.P.: Two-dimensional stress measurement of a micromachined piezoresistive structure with micro-Raman spectroscopy. Microsyst. Technol. 11, 97–103 (2005)CrossRef
20.
Zurück zum Zitat De Wolf, I.: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139–154 (1999)CrossRef De Wolf, I.: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139–154 (1999)CrossRef
21.
Zurück zum Zitat Chen, J., De Wolf, I.: Study of damage and stress induced by back grinding in Si wafers. Semicond. Sci. Technol. 18, 261–268 (2003)CrossRef Chen, J., De Wolf, I.: Study of damage and stress induced by back grinding in Si wafers. Semicond. Sci. Technol. 18, 261–268 (2003)CrossRef
22.
Zurück zum Zitat Chen, J., De Wolf, I.: Theoretical and experimental Raman spectroscopy study of mechanical stress induced by electronic packaging. IEEE Trans. Compon. Packag. Technol. 28, 484–492 (2005)CrossRef Chen, J., De Wolf, I.: Theoretical and experimental Raman spectroscopy study of mechanical stress induced by electronic packaging. IEEE Trans. Compon. Packag. Technol. 28, 484–492 (2005)CrossRef
23.
Zurück zum Zitat Pezzotti, G.: Raman piezo-spectroscopic analysis of natural and synthetic biomaterials. Anal. Bioanal. Chem. 381, 577–590 (2005)CrossRef Pezzotti, G.: Raman piezo-spectroscopic analysis of natural and synthetic biomaterials. Anal. Bioanal. Chem. 381, 577–590 (2005)CrossRef
24.
Zurück zum Zitat Miyatake, T., Pezzotti, G.: Validating Raman spectroscopic calibrations of phonon deformation potentials in silicon single crystals: a comparison between ball-on-ring and micro-indentation methods. J. Appl. Phys. 110, 093511 (2011)CrossRef Miyatake, T., Pezzotti, G.: Validating Raman spectroscopic calibrations of phonon deformation potentials in silicon single crystals: a comparison between ball-on-ring and micro-indentation methods. J. Appl. Phys. 110, 093511 (2011)CrossRef
25.
Zurück zum Zitat Lei, Z.K., Kang, Y.L., Hu, M., et al.: An experimental analysis of residual stress measurements in porous silicon using micro-raman spectroscopy. Chin. Phys. Lett. 21, 403–405 (2004)CrossRef Lei, Z.K., Kang, Y.L., Hu, M., et al.: An experimental analysis of residual stress measurements in porous silicon using micro-raman spectroscopy. Chin. Phys. Lett. 21, 403–405 (2004)CrossRef
26.
Zurück zum Zitat Kang, Y.L., Qiu, Y., Lei, Z.K., et al.: An application of Raman spectroscopy on the measurement of residual stress in porous silicon. Opt. Lasers Eng. 43, 847–855 (2005)CrossRef Kang, Y.L., Qiu, Y., Lei, Z.K., et al.: An application of Raman spectroscopy on the measurement of residual stress in porous silicon. Opt. Lasers Eng. 43, 847–855 (2005)CrossRef
27.
Zurück zum Zitat Lei, Z.K., Kang, Y.L., Cen, H., et al.: Variability on Raman shift to stress coefficient of porous silicon. Chin. Phys. Lett. 23, 1623–1626 (2006)CrossRef Lei, Z.K., Kang, Y.L., Cen, H., et al.: Variability on Raman shift to stress coefficient of porous silicon. Chin. Phys. Lett. 23, 1623–1626 (2006)CrossRef
28.
Zurück zum Zitat Li, Q., Qiu, W., Tan, H.Y., et al.: Micro-Raman spectroscopy stress measurement method for porous silicon film. Opt. Lasers Eng. 48, 1119–1125 (2010)CrossRef Li, Q., Qiu, W., Tan, H.Y., et al.: Micro-Raman spectroscopy stress measurement method for porous silicon film. Opt. Lasers Eng. 48, 1119–1125 (2010)CrossRef
29.
Zurück zum Zitat Qiu, W., Kang, Y.L., Li, Q., et al.: Experimental analysis for the effect of dynamic capillarity on stress transformation in porous silicon. Appl. Phys. Lett. 92, 041906 (2008)CrossRef Qiu, W., Kang, Y.L., Li, Q., et al.: Experimental analysis for the effect of dynamic capillarity on stress transformation in porous silicon. Appl. Phys. Lett. 92, 041906 (2008)CrossRef
30.
Zurück zum Zitat Xu, Z., Zheng, Q.: Micro- and nano-mechanics in China: a brief review of recent progress and perspectives. Sci. China Phys. Mech. Astron. 61, 74601 (2018)CrossRef Xu, Z., Zheng, Q.: Micro- and nano-mechanics in China: a brief review of recent progress and perspectives. Sci. China Phys. Mech. Astron. 61, 74601 (2018)CrossRef
31.
Zurück zum Zitat Liebold, C., Müller, W.H.: Strain maps on statically bend (001) silicon microbeams using AFM-integrated Raman spectroscopy. Arch. Appl. Mech. 85, 1353–1362 (2015)CrossRef Liebold, C., Müller, W.H.: Strain maps on statically bend (001) silicon microbeams using AFM-integrated Raman spectroscopy. Arch. Appl. Mech. 85, 1353–1362 (2015)CrossRef
32.
Zurück zum Zitat Wen, H., Borlaug, D., Wang, H., et al.: Engineering strain in silicon using SIMOX 3-D sculpting. IEEE Photon. J. 8, 1–9 (2016) Wen, H., Borlaug, D., Wang, H., et al.: Engineering strain in silicon using SIMOX 3-D sculpting. IEEE Photon. J. 8, 1–9 (2016)
33.
Zurück zum Zitat Naka, N., Kashiwagi, S., Nagai, Y., et al.: Micro-Raman spectroscopic analysis of single crystal silicon microstructures for surface stress mapping. Jpn. J. Appl. Phys. 54, 106601 (2015)CrossRef Naka, N., Kashiwagi, S., Nagai, Y., et al.: Micro-Raman spectroscopic analysis of single crystal silicon microstructures for surface stress mapping. Jpn. J. Appl. Phys. 54, 106601 (2015)CrossRef
34.
Zurück zum Zitat Anastassakis, E., Liarokapis, E.: Polycrystalline Si under strain: elastic and lattice-dynamical considerations. J. Appl. Phys. 62, 3346–3352 (1987)CrossRef Anastassakis, E., Liarokapis, E.: Polycrystalline Si under strain: elastic and lattice-dynamical considerations. J. Appl. Phys. 62, 3346–3352 (1987)CrossRef
35.
Zurück zum Zitat Lughi, V., Clarke, D.R.: Defect and stress characterization of AlN films by Raman spectroscopy. Appl. Phys. Lett. 89, 241911 (2006)CrossRef Lughi, V., Clarke, D.R.: Defect and stress characterization of AlN films by Raman spectroscopy. Appl. Phys. Lett. 89, 241911 (2006)CrossRef
36.
Zurück zum Zitat Wortman, J.J., Evans, R.A.: Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153–156 (1965)CrossRef Wortman, J.J., Evans, R.A.: Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153–156 (1965)CrossRef
37.
Zurück zum Zitat Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the Young’s modulus of silicon? J. Microelectromechanical Syst. 19, 229–238 (2010)CrossRef Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the Young’s modulus of silicon? J. Microelectromechanical Syst. 19, 229–238 (2010)CrossRef
38.
Zurück zum Zitat Hall, J.J.: Electronic effects in the elastic constants of n-type silicon. Phys. Rev. 161, 756–761 (1967)CrossRef Hall, J.J.: Electronic effects in the elastic constants of n-type silicon. Phys. Rev. 161, 756–761 (1967)CrossRef
39.
Zurück zum Zitat Anastassakis, E.: Selection rules of Raman scattering by optical phonons in strained cubic crystals. J. Appl. Phys. 82, 1582–1591 (1997)CrossRef Anastassakis, E.: Selection rules of Raman scattering by optical phonons in strained cubic crystals. J. Appl. Phys. 82, 1582–1591 (1997)CrossRef
40.
Zurück zum Zitat Lei, Z.K., Wang, Q., Qiu, W.: Stress transfer of a Kevlar 49 fiber pullout test studied by micro-Raman spectroscopy. Appl. Spectrosc. 67, 600–605 (2013)CrossRef Lei, Z.K., Wang, Q., Qiu, W.: Stress transfer of a Kevlar 49 fiber pullout test studied by micro-Raman spectroscopy. Appl. Spectrosc. 67, 600–605 (2013)CrossRef
41.
Zurück zum Zitat Lei, Z.K., Wang, Q.A., Kang, Y.L., et al.: Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 single fiber. Opt. Lasers Eng. 48, 1089–1095 (2010)CrossRef Lei, Z.K., Wang, Q.A., Kang, Y.L., et al.: Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 single fiber. Opt. Lasers Eng. 48, 1089–1095 (2010)CrossRef
42.
Zurück zum Zitat Qiu, W., Kang, Y.L., Lei, Z.K., et al.: A new theoretical model of a carbon nanotube strain sensor. Chin. Phys. Lett. 26, 46–49 (2009) Qiu, W., Kang, Y.L., Lei, Z.K., et al.: A new theoretical model of a carbon nanotube strain sensor. Chin. Phys. Lett. 26, 46–49 (2009)
43.
Zurück zum Zitat De Wolf, I.: Stress measurements in Si microelectronics devices using Raman spectroscopy. J. Raman Spectrosc. 30, 877–883 (1999)CrossRef De Wolf, I.: Stress measurements in Si microelectronics devices using Raman spectroscopy. J. Raman Spectrosc. 30, 877–883 (1999)CrossRef
44.
Zurück zum Zitat De Wolf, I.: Relation between Raman frequency and triaxal stress in Si for surface and cross-sectional experiments in microelectronics components. J. Appl. Phys. 118, 53101 (2015)CrossRef De Wolf, I.: Relation between Raman frequency and triaxal stress in Si for surface and cross-sectional experiments in microelectronics components. J. Appl. Phys. 118, 53101 (2015)CrossRef
Metadaten
Titel
A general metrology of stress on crystalline silicon with random crystal plane by using micro-Raman spectroscopy
verfasst von
Wei Qiu
Lulu Ma
Qiu Li
Huadan Xing
Cuili Cheng
Ganyun Huang
Publikationsdatum
21.09.2018
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 6/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0797-5

Weitere Artikel der Ausgabe 6/2018

Acta Mechanica Sinica 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.