Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2017

22.03.2017 | SPECIAL ISSUE: THEORY, MODELING, AND SIMULATION OF SHAPE MEMORY ALLOYS, INVITED PAPER

A Gradient-Based Constitutive Model for Shape Memory Alloys

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Constitutive models are necessary to design shape memory alloy (SMA) components at nano- and micro-scales in NEMS and MEMS. The behavior of small-scale SMA structures deviates from that of the bulk material. Unfortunately, this response cannot be modeled using conventional constitutive models which lack an intrinsic length scale. At small scales, size effects are often observed along with large gradients in the stress or strain. Therefore, a gradient-based thermodynamically consistent constitutive framework is established. Generalized surface and body forces are assumed to contribute to the free energy as work conjugates to the martensite volume fraction, transformation strain tensor, and their spatial gradients. The rates of evolution of these variables are obtained by invoking the principal of maximum dissipation after assuming a transformation surface, which is a differential equation in space. This approach is compared to the theories that use a configurational force (microforce) balance law. The developed constitutive model includes energetic and dissipative length scales that can be calibrated experimentally. Boundary value problems, including pure bending of SMA beams and simple torsion of SMA cylindrical bars, are solved to demonstrate the capabilities of this model. These problems contain the differential equation for the transformation surface as well as the equilibrium equation and are solved analytically and numerically. The simplest version of the model, containing only the additional gradient of martensite volume fraction, predicts a response with greater transformation hardening for smaller structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Notice that the nonlocal length scales here are independent of the ones in Eq. (27).
 
2
It is assumed here that if \({\textbf{Y}}_{i} \in {\mathcal{T}}^{m}\), the space of mth-rank tensors, then \({\varvec{\upmu}}_{i}^{s} \in {\mathcal{T}}^{m + 1}\) and \({\varvec{\upmu}}_{i}^{b} \in {\mathcal{T}}^{m}\).
 
Literatur
1.
Zurück zum Zitat Benard WL, Kahn H, Heuer AH, Huff MA (1998) Thin-film shape-memory alloy actuated micropumps. J Microelectromech Syst 7(2):245–251CrossRef Benard WL, Kahn H, Heuer AH, Huff MA (1998) Thin-film shape-memory alloy actuated micropumps. J Microelectromech Syst 7(2):245–251CrossRef
2.
Zurück zum Zitat Kahn H, Huff MA, Heuer AH (1998) The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8(3):213CrossRef Kahn H, Huff MA, Heuer AH (1998) The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8(3):213CrossRef
3.
Zurück zum Zitat Fu YQ, Luo JK, Ong SE, Zhang S, Flewitt AJ, Milne WI (2008) A shape memory microcage of TiNi/DLC films for biological applications. J Micromech Microeng 18(3):035026CrossRef Fu YQ, Luo JK, Ong SE, Zhang S, Flewitt AJ, Milne WI (2008) A shape memory microcage of TiNi/DLC films for biological applications. J Micromech Microeng 18(3):035026CrossRef
4.
Zurück zum Zitat Shin DD, Lee DG, Mohanchandra KP, Carman GP (2006) Thin film NiTi microthermostat array. Sens Actuators, A 130:37–41CrossRef Shin DD, Lee DG, Mohanchandra KP, Carman GP (2006) Thin film NiTi microthermostat array. Sens Actuators, A 130:37–41CrossRef
5.
Zurück zum Zitat Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46(16):5611–5626CrossRef Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46(16):5611–5626CrossRef
6.
Zurück zum Zitat Bazant ZP, Planas J (1997) Fracture and size effect in concrete and other quasibrittle materials. New directions in civil engineering. Taylor & Francis, London Bazant ZP, Planas J (1997) Fracture and size effect in concrete and other quasibrittle materials. New directions in civil engineering. Taylor & Francis, London
7.
Zurück zum Zitat Chen CQ, Shi Y, Zhang YS, Zhu J, Yan YJ (2006) Size dependence of young’s modulus in ZnO nanowires. Phys Rev Lett 96:075505CrossRef Chen CQ, Shi Y, Zhang YS, Zhu J, Yan YJ (2006) Size dependence of young’s modulus in ZnO nanowires. Phys Rev Lett 96:075505CrossRef
8.
Zurück zum Zitat Yang F (2004) Size-dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations. J Appl Phys 95(7):3516–3520CrossRef Yang F (2004) Size-dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations. J Appl Phys 95(7):3516–3520CrossRef
9.
Zurück zum Zitat Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487CrossRef Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487CrossRef
10.
Zurück zum Zitat Hutchinson JW (2000) Plasticity at the micron scale. Int J Solids Struct 37(1):225–238CrossRef Hutchinson JW (2000) Plasticity at the micron scale. Int J Solids Struct 37(1):225–238CrossRef
11.
Zurück zum Zitat Morrison JLM (1939) The yield of mild steel with particular reference to the effect of size of specimen. Proc Inst Mech Eng 142(1):193–223CrossRef Morrison JLM (1939) The yield of mild steel with particular reference to the effect of size of specimen. Proc Inst Mech Eng 142(1):193–223CrossRef
12.
Zurück zum Zitat Frommen C, Wilde G, Rösner H (2004) Wet-chemical synthesis and martensitic phase transformation of Au–Cd nanoparticles with near-equiatomic composition. J Alloy Compd 377(1–2):232–242CrossRef Frommen C, Wilde G, Rösner H (2004) Wet-chemical synthesis and martensitic phase transformation of Au–Cd nanoparticles with near-equiatomic composition. J Alloy Compd 377(1–2):232–242CrossRef
13.
Zurück zum Zitat Glezer AM, Blinova EN, Pozdnyakov VA, Shelyakov AV (2003) Martensite transformation in nanoparticles and nanomaterials. J Nanopart Res 5(5–6):551–560CrossRef Glezer AM, Blinova EN, Pozdnyakov VA, Shelyakov AV (2003) Martensite transformation in nanoparticles and nanomaterials. J Nanopart Res 5(5–6):551–560CrossRef
14.
Zurück zum Zitat Frick CP, Orso S, Arzt E (2007) Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars. Acta Mater 55(11):3845–3855CrossRef Frick CP, Orso S, Arzt E (2007) Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars. Acta Mater 55(11):3845–3855CrossRef
15.
Zurück zum Zitat San Juan J, Nó ML (2013) Superelasticity and shape memory at nano-scale: size effects on the martensitic transformation. J Alloy Compd 577(Supplement 1):S25–S29CrossRef San Juan J, Nó ML (2013) Superelasticity and shape memory at nano-scale: size effects on the martensitic transformation. J Alloy Compd 577(Supplement 1):S25–S29CrossRef
16.
Zurück zum Zitat Norfleet DM, Sarosi PM, Manchiraju S, Wagner MF, Uchic MD, Anderson PM, Mills MJ (2009) Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater 57(12):3549–3561CrossRef Norfleet DM, Sarosi PM, Manchiraju S, Wagner MF, Uchic MD, Anderson PM, Mills MJ (2009) Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater 57(12):3549–3561CrossRef
17.
Zurück zum Zitat Ozdemir N, Karaman I, Mara NA, Chumlyakov YI, Karaca HE (2012) Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation. Acta Mater 60(16):5670CrossRef Ozdemir N, Karaman I, Mara NA, Chumlyakov YI, Karaca HE (2012) Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation. Acta Mater 60(16):5670CrossRef
18.
Zurück zum Zitat San Juan J, Nó ML, Schuh CA (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat Nanotechnol 4(7):415–419CrossRef San Juan J, Nó ML, Schuh CA (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat Nanotechnol 4(7):415–419CrossRef
19.
Zurück zum Zitat Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59(2):537–553CrossRef Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59(2):537–553CrossRef
20.
Zurück zum Zitat Babanly MB, Lobodyuk VA, Matveeva NM (1993) Size effect in martensite transformation in TiNiCu alloys. Fiz Met Metalloved 75(5):89–95 Babanly MB, Lobodyuk VA, Matveeva NM (1993) Size effect in martensite transformation in TiNiCu alloys. Fiz Met Metalloved 75(5):89–95
21.
Zurück zum Zitat Busch JD, Johnson AD, Lee CH, Stevenson DA (1990) Shape-memory properties in Ni-Ti sputter-deposited film. J Appl Phys 68(12):6224–6228CrossRef Busch JD, Johnson AD, Lee CH, Stevenson DA (1990) Shape-memory properties in Ni-Ti sputter-deposited film. J Appl Phys 68(12):6224–6228CrossRef
22.
Zurück zum Zitat Ishida A, Sato M (2003) Thickness effect on shape memory behavior of Ti-50.0at.%Ni thin film. Acta Mater 51(18):5571–5578CrossRef Ishida A, Sato M (2003) Thickness effect on shape memory behavior of Ti-50.0at.%Ni thin film. Acta Mater 51(18):5571–5578CrossRef
23.
Zurück zum Zitat Wan D, Komvopoulos K (2005) Thickness effect on thermally induced phase transformations in sputtered titanium-nickel shape-memory films. J Mater Res 20:1606–1612CrossRef Wan D, Komvopoulos K (2005) Thickness effect on thermally induced phase transformations in sputtered titanium-nickel shape-memory films. J Mater Res 20:1606–1612CrossRef
24.
Zurück zum Zitat Guimarães JRC (2007) Excess driving force to initiate martensite transformation in fine-grained austenite. Scr Mater 57(3):237–239CrossRef Guimarães JRC (2007) Excess driving force to initiate martensite transformation in fine-grained austenite. Scr Mater 57(3):237–239CrossRef
25.
Zurück zum Zitat Kim Y, Cho G, Hur S, Jeong S, Nam T (2006) Nanocrystallization of a Ti–50.0Ni(at.%) alloy by cold working and stress/strain behavior. Mater Sci Eng, A 438–440:531–535CrossRef Kim Y, Cho G, Hur S, Jeong S, Nam T (2006) Nanocrystallization of a Ti–50.0Ni(at.%) alloy by cold working and stress/strain behavior. Mater Sci Eng, A 438–440:531–535CrossRef
26.
Zurück zum Zitat Kockar B, Karaman I, Kim JI, Chumlyakov YI, Sharp J, Yu CJ (2008) Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Mater 56(14):3630–3646CrossRef Kockar B, Karaman I, Kim JI, Chumlyakov YI, Sharp J, Yu CJ (2008) Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Mater 56(14):3630–3646CrossRef
27.
Zurück zum Zitat Malygin GA (2008) Nanoscopic size effects on martensitic transformations in shape memory alloys. Phys Solid State 50(8):1538–1543CrossRef Malygin GA (2008) Nanoscopic size effects on martensitic transformations in shape memory alloys. Phys Solid State 50(8):1538–1543CrossRef
28.
Zurück zum Zitat Waitz T, Antretter T, Fischer FD, Simha NK, Karnthaler HP (2007) Size effects on the martensitic phase transformation of NiTi nanograins. J Mech Phys Solids 55(2):419–444CrossRef Waitz T, Antretter T, Fischer FD, Simha NK, Karnthaler HP (2007) Size effects on the martensitic phase transformation of NiTi nanograins. J Mech Phys Solids 55(2):419–444CrossRef
29.
Zurück zum Zitat Waitz T, Kazykhanov V, Karnthaler HP (2004) Martensitic phase transformations in nanocrystalline NiTi studied by {TEM}. Acta Mater 52(1):137–147CrossRef Waitz T, Kazykhanov V, Karnthaler HP (2004) Martensitic phase transformations in nanocrystalline NiTi studied by {TEM}. Acta Mater 52(1):137–147CrossRef
30.
Zurück zum Zitat Eringen AC (1978) Line crack subject to shear. Int J Fract 14(4):367–379CrossRef Eringen AC (1978) Line crack subject to shear. Int J Fract 14(4):367–379CrossRef
31.
Zurück zum Zitat Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710CrossRef Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710CrossRef
32.
Zurück zum Zitat Lazar M, Maugin GA (2005) Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int J Eng Sci 43(13–14):1157–1184CrossRef Lazar M, Maugin GA (2005) Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int J Eng Sci 43(13–14):1157–1184CrossRef
33.
Zurück zum Zitat Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA (1990) The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 23(11):1103–1113CrossRef Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA (1990) The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 23(11):1103–1113CrossRef
34.
Zurück zum Zitat Kakunai S, Masaki J, Kuroda R, Iwata K, Nagata R (1985) Measurement of apparent young’s modulus in the bending of cantilever beam by heterodyne holographic interferometry. Exp Mech 25(4):408–412CrossRef Kakunai S, Masaki J, Kuroda R, Iwata K, Nagata R (1985) Measurement of apparent young’s modulus in the bending of cantilever beam by heterodyne holographic interferometry. Exp Mech 25(4):408–412CrossRef
35.
Zurück zum Zitat Lakes RS (1986) Experimental microelasticity of two porous solids. Int J Solids Struct 22(1):55–63CrossRef Lakes RS (1986) Experimental microelasticity of two porous solids. Int J Solids Struct 22(1):55–63CrossRef
36.
Zurück zum Zitat Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361CrossRef Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361CrossRef
37.
Zurück zum Zitat Jirasek M (2004) Nonlocal theories in continuum mechanics. Acta Polytech 44(5–6):16–34 Jirasek M (2004) Nonlocal theories in continuum mechanics. Acta Polytech 44(5–6):16–34
38.
Zurück zum Zitat McElhaney KW, Vlassak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13:1300–1306CrossRef McElhaney KW, Vlassak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13:1300–1306CrossRef
39.
Zurück zum Zitat Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115CrossRef Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115CrossRef
40.
Zurück zum Zitat Bazant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149CrossRef Bazant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149CrossRef
41.
Zurück zum Zitat Borino G, Fuschi P, Polizzotto C (1999) A thermodynamic approach to nonlocal plasticity and related variational principles. J Appl Mech 66(4):952–963CrossRef Borino G, Fuschi P, Polizzotto C (1999) A thermodynamic approach to nonlocal plasticity and related variational principles. J Appl Mech 66(4):952–963CrossRef
42.
Zurück zum Zitat Jirasek M, Bazant ZP (2002) Inelastic analysis of structures. Wiley, New York Jirasek M, Bazant ZP (2002) Inelastic analysis of structures. Wiley, New York
43.
Zurück zum Zitat Engelen RAB, Geers MGD, Baaijens F (2003) Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int J Plast 19(4):403–433CrossRef Engelen RAB, Geers MGD, Baaijens F (2003) Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int J Plast 19(4):403–433CrossRef
44.
Zurück zum Zitat Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41(12):1825–1857CrossRef Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41(12):1825–1857CrossRef
45.
Zurück zum Zitat Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol 106(4):326–330CrossRef Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol 106(4):326–330CrossRef
46.
Zurück zum Zitat Aifantis EC (1999) Strain gradient interpretation of size effects. Int J Fract 95(1–4):299–314CrossRef Aifantis EC (1999) Strain gradient interpretation of size effects. Int J Fract 95(1–4):299–314CrossRef
47.
Zurück zum Zitat Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49(10):2245–2271CrossRef Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49(10):2245–2271CrossRef
48.
Zurück zum Zitat Qiao L, Rimoli JJ, Chen Y, Schuh CA, Radovitzky R (2011) Nonlocal superelastic model of size-dependent hardening and dissipation in single crystal Cu-Al-Ni shape memory alloys. Phys Rev Lett 106(8):085504CrossRef Qiao L, Rimoli JJ, Chen Y, Schuh CA, Radovitzky R (2011) Nonlocal superelastic model of size-dependent hardening and dissipation in single crystal Cu-Al-Ni shape memory alloys. Phys Rev Lett 106(8):085504CrossRef
49.
Zurück zum Zitat M Tabesh, JG Boyd, DC Lagoudas (2014) Modeling size effect in the SMA response: a gradient theory. In: Proceedings of SPIE, vol 9058, pp 905803–905803–11 M Tabesh, JG Boyd, DC Lagoudas (2014) Modeling size effect in the SMA response: a gradient theory. In: Proceedings of SPIE, vol 9058, pp 905803–905803–11
50.
Zurück zum Zitat Engelen R, Fleck NA, Peerlings RHJ, Geers M (2006) An evaluation of higher-order plasticity theories for predicting size effects and localisation. Int J Solids Struct 43(7):1857–1877CrossRef Engelen R, Fleck NA, Peerlings RHJ, Geers M (2006) An evaluation of higher-order plasticity theories for predicting size effects and localisation. Int J Solids Struct 43(7):1857–1877CrossRef
51.
Zurück zum Zitat Gudmundson P (2004) A unified treatment of strain gradient plasticity. J Mech Phys Solids 52(6):1379–1406CrossRef Gudmundson P (2004) A unified treatment of strain gradient plasticity. J Mech Phys Solids 52(6):1379–1406CrossRef
52.
Zurück zum Zitat Gurtin ME (1996) Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Phys D 92(3):178–192CrossRef Gurtin ME (1996) Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Phys D 92(3):178–192CrossRef
53.
Zurück zum Zitat Aifantis EC (2003) Update on a class of gradient theories. Mech Mater 35(3):259–280CrossRef Aifantis EC (2003) Update on a class of gradient theories. Mech Mater 35(3):259–280CrossRef
54.
Zurück zum Zitat Aifantis EC (2011) On the gradient approach—relation to Eringen’s nonlocal theory. Int J Eng Sci 49(12):1367–1377CrossRef Aifantis EC (2011) On the gradient approach—relation to Eringen’s nonlocal theory. Int J Eng Sci 49(12):1367–1377CrossRef
55.
Zurück zum Zitat Mühlhaus HB, Aifantis EC (1991) A variational principle for gradient plasticity. Int J Solids Struct 28(7):845–857CrossRef Mühlhaus HB, Aifantis EC (1991) A variational principle for gradient plasticity. Int J Solids Struct 28(7):845–857CrossRef
56.
Zurück zum Zitat Lagoudas DC (ed) (2008) Shape memory alloys: modeling and engineering applications. Springer, New York Lagoudas DC (ed) (2008) Shape memory alloys: modeling and engineering applications. Springer, New York
57.
Zurück zum Zitat Badnava H, Kadkhodaei M, Mashayekhi M (2014) A non-local implicit gradient-enhanced model for unstable behaviors of pseudoelastic shape memory alloys in tensile loading. Int J Solids Struct 51(23):4015–4025CrossRef Badnava H, Kadkhodaei M, Mashayekhi M (2014) A non-local implicit gradient-enhanced model for unstable behaviors of pseudoelastic shape memory alloys in tensile loading. Int J Solids Struct 51(23):4015–4025CrossRef
58.
Zurück zum Zitat Duval A, Haboussi M, Zineb TB (2011) Modelling of localization and propagation of phase transformation in superelastic SMA by a gradient nonlocal approach. Int J Solids Struct 48(13):1879–1893CrossRef Duval A, Haboussi M, Zineb TB (2011) Modelling of localization and propagation of phase transformation in superelastic SMA by a gradient nonlocal approach. Int J Solids Struct 48(13):1879–1893CrossRef
59.
Zurück zum Zitat Peultier B, Zineb TB, Patoor E (2006) Macroscopic constitutive law of shape memory alloy thermomechanical behaviour. Application to structure computation by FEM. Mech Mater 38(5):510–524CrossRef Peultier B, Zineb TB, Patoor E (2006) Macroscopic constitutive law of shape memory alloy thermomechanical behaviour. Application to structure computation by FEM. Mech Mater 38(5):510–524CrossRef
60.
Zurück zum Zitat Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242CrossRef Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242CrossRef
61.
Zurück zum Zitat Gurtin ME, Anand L (2005) A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: small deformations. J Mech Phys Solids 53(7):1624–1649CrossRef Gurtin ME, Anand L (2005) A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: small deformations. J Mech Phys Solids 53(7):1624–1649CrossRef
62.
Zurück zum Zitat Sun QP, He YJ (2008) A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals. Int J Solids Struct 45(13):3868–3896CrossRef Sun QP, He YJ (2008) A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals. Int J Solids Struct 45(13):3868–3896CrossRef
63.
Zurück zum Zitat Lubliner J (2008) Plasticity theory. Courier Dover Publications, New York Lubliner J (2008) Plasticity theory. Courier Dover Publications, New York
64.
Zurück zum Zitat Santaoja K (2004) Gradient theory from the thermomechanics point of view. Eng Fract Mech 71(4):557–566CrossRef Santaoja K (2004) Gradient theory from the thermomechanics point of view. Eng Fract Mech 71(4):557–566CrossRef
65.
Zurück zum Zitat Boehler JP (1987) Representations for isotropic and anisotropic non-polynomial tensor functions. In: Boehler JP (ed) Applications of tensor functions in solid mechanics. International Centre for Mechanical Sciences, vol 292. Springer, Vienna, pp 31–53CrossRef Boehler JP (1987) Representations for isotropic and anisotropic non-polynomial tensor functions. In: Boehler JP (ed) Applications of tensor functions in solid mechanics. International Centre for Mechanical Sciences, vol 292. Springer, Vienna, pp 31–53CrossRef
66.
Zurück zum Zitat Spencer AJM (1987) Isotropic polynomial invariants and tensor functions. In: Boehler JP (ed) Applications of tensor functions in solid mechanics. International Centre for Mechanical Sciences, vol 292. Springer, Vienna, pp 141–169CrossRef Spencer AJM (1987) Isotropic polynomial invariants and tensor functions. In: Boehler JP (ed) Applications of tensor functions in solid mechanics. International Centre for Mechanical Sciences, vol 292. Springer, Vienna, pp 141–169CrossRef
67.
Zurück zum Zitat Lagoudas DC, Bo Z, Qidwai MA (1996) A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mech Compos Mater Struct 3(2):153–179CrossRef Lagoudas DC, Bo Z, Qidwai MA (1996) A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mech Compos Mater Struct 3(2):153–179CrossRef
68.
Zurück zum Zitat Lagoudas DC, Hartl D, Chemisky Y, Machado L, Popov P (2012) Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int J Plast 32:155–183CrossRef Lagoudas DC, Hartl D, Chemisky Y, Machado L, Popov P (2012) Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int J Plast 32:155–183CrossRef
69.
Zurück zum Zitat Gurtin ME (1982) An introduction to continuum mechanics. Academic Press, New York Gurtin ME (1982) An introduction to continuum mechanics. Academic Press, New York
70.
Zurück zum Zitat Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviors. World Scientific, SingaporeCrossRef Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviors. World Scientific, SingaporeCrossRef
71.
Zurück zum Zitat Rivlin RS (1997) On the principles of equipresence and unification. In: Barenblatt GI, Joseph DD (eds) Collected papers of RS Rivlin. Springer, Berlin, pp 1425–1426CrossRef Rivlin RS (1997) On the principles of equipresence and unification. In: Barenblatt GI, Joseph DD (eds) Collected papers of RS Rivlin. Springer, Berlin, pp 1425–1426CrossRef
72.
Zurück zum Zitat Gurtin ME, Anand L (2009) Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J Mech Phys Solids 57(3):405–421CrossRef Gurtin ME, Anand L (2009) Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J Mech Phys Solids 57(3):405–421CrossRef
73.
Zurück zum Zitat Lele SP, Anand L (2008) A small-deformation strain-gradient theory for isotropic viscoplastic materials. Philos Mag 88(30–32):3655–3689CrossRef Lele SP, Anand L (2008) A small-deformation strain-gradient theory for isotropic viscoplastic materials. Philos Mag 88(30–32):3655–3689CrossRef
Metadaten
Titel
A Gradient-Based Constitutive Model for Shape Memory Alloys
Publikationsdatum
22.03.2017
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2017
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-017-0100-9

Weitere Artikel der Ausgabe 2/2017

Shape Memory and Superelasticity 2/2017 Zur Ausgabe

SPECIAL ISSUE: FUNCTIONAL PERFORMANCE OF SHAPE MEMORY ALLOYS, INVITED PAPER

Cyclic Nanoindentation and Nano-Impact Fatigue Mechanisms of Functionally Graded TiN/TiNi Film

SPECIAL ISSUE: ICFSMA 2016, INVITED PAPER

Magnetic Torque in Single Crystal Ni–Mn–Ga

SPECIAL ISSUE: THEORY, MODELING, AND SIMULATION OF SHAPE MEMORY ALLOYS, INVITED PAPER

Computational Analysis of Advanced Shape-Memory Alloy Devices Through a Robust Modeling Framework

SPECIAL ISSUE: THEORY, MODELING, AND SIMULATION OF SHAPE MEMORY ALLOYS, INVITED PAPER

Modeling the Cyclic Behavior of Shape Memory Alloys

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.