Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.08.2019 | Ausgabe 11/2019

Water Resources Management 11/2019

A Hybrid Model for Real-Time Probabilistic Flood Forecasting Using Elman Neural Network with Heterogeneity of Error Distributions

Zeitschrift:
Water Resources Management > Ausgabe 11/2019
Autoren:
Xinyu Wan, Qingyan Yang, Peng Jiang, Ping’an Zhong
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Traditional static neural networks often fail to describe dynamic flood processes, while recurrent neural networks can reflect this dynamic feature of flooding. In this paper, a real-time framework for probabilistic flood forecasting using an Elman neural network is presented. Based on this framework, flood forecasting models with different lead times are developed and trained by a real-time recurrent learning algorithm for forecasting the inflow of the Xianghongdian reservoir of the Huai River in East China. The performances of these models are evaluated. The forecasting model having a 3 h lead time meets the precision requirements and is chosen as the deterministic flood forecasting model. Compared with the multilayer perceptron having a 3 h lead time, the relative error of flood volume is 5.28% less, and the coefficient of efficiency is 0.105 greater. We further analyze the error characteristics of the selected model and derive the discharge probability density function based on the heterogeneity of error distributions. The forecasted discharge intervals with different confidence levels, the expected values, and the median values are obtained. The results show that the average relative errors of flood volume and peak discharge obtained by the median value forecasting are −1.66% and 5.69% respectively, and the coefficient of efficiency is 0.784. The performance of the median value forecasting was slightly better than that of the deterministic forecasting, and considerably better than that of the expected value forecasting. This study demonstrates that the proposed model has high practicability and can provide decision support for flood control.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2019

Water Resources Management 11/2019 Zur Ausgabe