Skip to main content
Erschienen in:

23.05.2017

A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations

verfasst von: Thomas O. Gallouët, Quentin Mérigot

Erschienen in: Foundations of Computational Mathematics | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We approximate the regular solutions of the incompressible Euler equations by the solution of ODEs on finite-dimensional spaces. Our approach combines Arnold’s interpretation of the solution of the Euler equations for incompressible and inviscid fluids as geodesics in the space of measure-preserving diffeomorphisms, and an extrinsic approximation of the equations of geodesics due to Brenier. Using recently developed semi-discrete optimal transport solvers, this approach yields a numerical scheme which is able to handle problems of realistic size in 2D. Our purpose in this article is to establish the convergence of this scheme towards regular solutions of the incompressible Euler equations, and to provide numerical experiments on a few simple test cases in 2D.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Ambrosio. Transport equation and cauchy problem for \(\rm BV\) vector fields. Inventiones mathematicae, 158(2):227–260, 2004.MathSciNetCrossRefMATH L. Ambrosio. Transport equation and cauchy problem for \(\rm BV\) vector fields. Inventiones mathematicae, 158(2):227–260, 2004.MathSciNetCrossRefMATH
2.
Zurück zum Zitat V. Arnold. Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier, 16(1):319–361, 1966.CrossRefMATH V. Arnold. Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier, 16(1):319–361, 1966.CrossRefMATH
3.
Zurück zum Zitat F. Aurenhammer, F. Hoffmann, and B. Aronov. Minkowski-type theorems and least-squares clustering. Algorithmica, 20(1):61–76, 1998.MathSciNetCrossRefMATH F. Aurenhammer, F. Hoffmann, and B. Aronov. Minkowski-type theorems and least-squares clustering. Algorithmica, 20(1):61–76, 1998.MathSciNetCrossRefMATH
4.
Zurück zum Zitat F. Bouchut. Renormalized solutions to the vlasov equation with coefficients of bounded variation. Archive for rational mechanics and analysis, 157(1):75–90, 2001.MathSciNetCrossRefMATH F. Bouchut. Renormalized solutions to the vlasov equation with coefficients of bounded variation. Archive for rational mechanics and analysis, 157(1):75–90, 2001.MathSciNetCrossRefMATH
5.
Zurück zum Zitat Y. Brenier. A combinatorial algorithm for the Euler equations of incompressible flows. In Proceedings of the Eighth International Conference on Computing Methods in Applied Sciences and Engineering (Versailles, 1987), 1989. Y. Brenier. A combinatorial algorithm for the Euler equations of incompressible flows. In Proceedings of the Eighth International Conference on Computing Methods in Applied Sciences and Engineering (Versailles, 1987), 1989.
6.
Zurück zum Zitat Y. Brenier. The least action principle and the related concept of generalized flows for incompressible perfect fluids. Journal of the American Mathematical Society, 1989. Y. Brenier. The least action principle and the related concept of generalized flows for incompressible perfect fluids. Journal of the American Mathematical Society, 1989.
7.
Zurück zum Zitat Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on pure and applied mathematics, 44(4):375–417, 1991.MathSciNetCrossRefMATH Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on pure and applied mathematics, 44(4):375–417, 1991.MathSciNetCrossRefMATH
8.
Zurück zum Zitat Y. Brenier. Derivation of the Euler equations from a caricature of Coulomb interaction. Communications in Mathematical Physics, 212(1):93–104, 2000.MathSciNetCrossRefMATH Y. Brenier. Derivation of the Euler equations from a caricature of Coulomb interaction. Communications in Mathematical Physics, 212(1):93–104, 2000.MathSciNetCrossRefMATH
9.
Zurück zum Zitat Y. Brenier. Generalized solutions and hydrostatic approximation of the Euler equations. Physica D. Nonlinear Phenomena, 2008. Y. Brenier. Generalized solutions and hydrostatic approximation of the Euler equations. Physica D. Nonlinear Phenomena, 2008.
10.
Zurück zum Zitat Y. Brenier and G. Loeper. A geometric approximation to the euler equations: the vlasov–monge–ampere system. Geometric And Functional Analysis, 14(6):1182–1218, 2004.MathSciNetCrossRefMATH Y. Brenier and G. Loeper. A geometric approximation to the euler equations: the vlasov–monge–ampere system. Geometric And Functional Analysis, 14(6):1182–1218, 2004.MathSciNetCrossRefMATH
11.
Zurück zum Zitat Y. Brudnyi and P. Shvartsman. Whitney’s extension problem for multivariate \(c^{\{1, \omega \}}\)-functions. Transactions of the American Mathematical Society, 353(6):2487–2512, 2001.MathSciNetCrossRefMATH Y. Brudnyi and P. Shvartsman. Whitney’s extension problem for multivariate \(c^{\{1, \omega \}}\)-functions. Transactions of the American Mathematical Society, 353(6):2487–2512, 2001.MathSciNetCrossRefMATH
12.
Zurück zum Zitat M. Cullen, W. Gangbo, and G. Pisante. The semigeostrophic equations discretized in reference and dual variables. Archive for rational mechanics and analysis, 185(2):341–363, 2007.MathSciNetCrossRefMATH M. Cullen, W. Gangbo, and G. Pisante. The semigeostrophic equations discretized in reference and dual variables. Archive for rational mechanics and analysis, 185(2):341–363, 2007.MathSciNetCrossRefMATH
13.
Zurück zum Zitat F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun. Blue noise through optimal transport. ACM Transactions on Graphics (TOG), 31(6):171, 2012. F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun. Blue noise through optimal transport. ACM Transactions on Graphics (TOG), 31(6):171, 2012.
14.
Zurück zum Zitat F. de Goes, C. Wallez, J. Huang, D. Pavlov, and M. Desbrun. Power particles: an incompressible fluid solver based on power diagrams. ACM Transactions on Graphics (TOG), 34(4):50, 2015.MATH F. de Goes, C. Wallez, J. Huang, D. Pavlov, and M. Desbrun. Power particles: an incompressible fluid solver based on power diagrams. ACM Transactions on Graphics (TOG), 34(4):50, 2015.MATH
15.
Zurück zum Zitat C. Fefferman. Whitney’s extension problem for \(c^m\). Annals of mathematics, pages 313–359, 2006. C. Fefferman. Whitney’s extension problem for \(c^m\). Annals of mathematics, pages 313–359, 2006.
16.
Zurück zum Zitat C. Fefferman et al. Extension of \( c^{\{m, \Omega \}}\)-smooth functions by linear operators. Revista Matematica Iberoamericana, 25(1):1–48, 2009.MathSciNetCrossRefMATH C. Fefferman et al. Extension of \( c^{\{m, \Omega \}}\)-smooth functions by linear operators. Revista Matematica Iberoamericana, 25(1):1–48, 2009.MathSciNetCrossRefMATH
17.
Zurück zum Zitat J. Kitagawa, Q. Mérigot, and B. Thibert. Convergence of a newton algorithm for semi-discrete optimal transport. arXiv:1603.05579, 2016. J. Kitagawa, Q. Mérigot, and B. Thibert. Convergence of a newton algorithm for semi-discrete optimal transport. arXiv:​1603.​05579, 2016.
18.
Zurück zum Zitat B. Lévy. A numerical algorithm for \(\rm L^2\) semi-discrete optimal transport in 3d. ESAIM M2AN, 49(6), 2015. B. Lévy. A numerical algorithm for \(\rm L^2\) semi-discrete optimal transport in 3d. ESAIM M2AN, 49(6), 2015.
19.
Zurück zum Zitat P.-L. Lions. Sur les équations différentielles ordinaires et les équations de transport. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 326(7):833–838, 1998.CrossRefMATH P.-L. Lions. Sur les équations différentielles ordinaires et les équations de transport. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 326(7):833–838, 1998.CrossRefMATH
20.
Zurück zum Zitat Q. Mérigot. A multiscale approach to optimal transport. Computer Graphics Forum, 30(5):1583–1592, 2011.CrossRef Q. Mérigot. A multiscale approach to optimal transport. Computer Graphics Forum, 30(5):1583–1592, 2011.CrossRef
21.
Zurück zum Zitat Q. Mérigot and J.-M. Mirebeau. Minimal geodesics along volume preserving maps, through semi-discrete optimal transport. arXiv:1505.03306, 2015. Q. Mérigot and J.-M. Mirebeau. Minimal geodesics along volume preserving maps, through semi-discrete optimal transport. arXiv:​1505.​03306, 2015.
22.
Zurück zum Zitat J.-M. Mirebeau. Discretization of the 3d monge-ampere operator, between wide stencils and power diagrams. arXiv:1503.00947, 2015. J.-M. Mirebeau. Discretization of the 3d monge-ampere operator, between wide stencils and power diagrams. arXiv:​1503.​00947, 2015.
23.
Zurück zum Zitat A. I. Shnirelman. Generalized fluid flows, their approximation and applications. Geometric and Functional Analysis, 1994. A. I. Shnirelman. Generalized fluid flows, their approximation and applications. Geometric and Functional Analysis, 1994.
24.
Zurück zum Zitat C. Villani. Optimal transport: old and new. Springer Verlag, 2009. C. Villani. Optimal transport: old and new. Springer Verlag, 2009.
Metadaten
Titel
A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations
verfasst von
Thomas O. Gallouët
Quentin Mérigot
Publikationsdatum
23.05.2017
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 4/2018
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-017-9355-y