Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2014

01.01.2014

A Microstructure-Based Time-Dependent Crack Growth Model for Life and Reliability Prediction of Turbopropulsion Systems

verfasst von: Kwai S. Chan, Michael P. Enright, Jonathan Moody, Simeon H. K. Fitch

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this investigation was to develop an innovative methodology for life and reliability prediction of hot-section components in advanced turbopropulsion systems. A set of generic microstructure-based time-dependent crack growth (TDCG) models was developed and used to assess the sources of material variability due to microstructure and material parameters such as grain size, activation energy, and crack growth threshold for TDCG. A comparison of model predictions and experimental data obtained in air and in vacuum suggests that oxidation is responsible for higher crack growth rates at high temperatures, low frequencies, and long dwell times, but oxidation can also induce higher crack growth thresholds (ΔK th or K th) under certain conditions. Using the enhanced risk analysis tool and material constants calibrated to IN 718 data, the effect of TDCG on the risk of fracture in turboengine components was demonstrated for a generic rotor design and a realistic mission profile using the DARWIN® probabilistic life-prediction code. The results of this investigation confirmed that TDCG and cycle-dependent crack growth in IN 718 can be treated by a simple summation of the crack increments over a mission. For the temperatures considered, TDCG in IN 718 can be considered as a K-controlled or a diffusion-controlled oxidation-induced degradation process. This methodology provides a pathway for evaluating microstructural effects on multiple damage modes in hot-section components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat K.S. Chan, M.P. Enright, J.P. Moody, B. Hocking, and S.H.K. Fitch, J. Eng. Gas Turbine Power, 2012, vol. 134, p. 122501. K.S. Chan, M.P. Enright, J.P. Moody, B. Hocking, and S.H.K. Fitch, J. Eng. Gas Turbine Power, 2012, vol. 134, p. 122501.
2.
Zurück zum Zitat DARWIN® User’s Guide. Southwest Research Institute, 2011, San Antonio, TX. DARWIN® User’s Guide. Southwest Research Institute, 2011, San Antonio, TX.
3.
Zurück zum Zitat M. Prager and G. Sines, ASME J. Basic Eng., Vol. 225, 1971, pp. 225-30.CrossRef M. Prager and G. Sines, ASME J. Basic Eng., Vol. 225, 1971, pp. 225-30.CrossRef
4.
Zurück zum Zitat J.M. Larson and S. Floreen, Metall. Trans. A, Vol. 8A, 1977, pp. 51-55.CrossRef J.M. Larson and S. Floreen, Metall. Trans. A, Vol. 8A, 1977, pp. 51-55.CrossRef
5.
Zurück zum Zitat Material data provided through direct telecommunications and in Probabilistic Design for Rotor Integrity (PDRI) Interim Report 9, Southwest Research Institute, March 4, 2010. The tests were performed by PW and funded under FAA Grant 05-G-005. Material data provided through direct telecommunications and in Probabilistic Design for Rotor Integrity (PDRI) Interim Report 9, Southwest Research Institute, March 4, 2010. The tests were performed by PW and funded under FAA Grant 05-G-005.
6.
Zurück zum Zitat J.P. Pedron and A. Pineau, Mater. Sci. Eng., Vol. 56, 1982, pp. 143-56.CrossRef J.P. Pedron and A. Pineau, Mater. Sci. Eng., Vol. 56, 1982, pp. 143-56.CrossRef
7.
Zurück zum Zitat M. Gao, D.J. Dwyer, and R.P. Wei: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1994, pp. 581–92. M. Gao, D.J. Dwyer, and R.P. Wei: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1994, pp. 581–92.
8.
Zurück zum Zitat R.P. Wei and Z. Huang, Mater. Sci. Eng., Vol. A336, 2002, pp. 209-214.CrossRef R.P. Wei and Z. Huang, Mater. Sci. Eng., Vol. A336, 2002, pp. 209-214.CrossRef
9.
Zurück zum Zitat D.A. Woodford: Energy Mater., 2006, vol. 1 (1), pp. 59–79. D.A. Woodford: Energy Mater., 2006, vol. 1 (1), pp. 59–79.
10.
Zurück zum Zitat S. Floreen and R. Raj: Flow and Fracture at Elevated Temperatures, ASM, Materials Park, 1983, pp. 383–404. S. Floreen and R. Raj: Flow and Fracture at Elevated Temperatures, ASM, Materials Park, 1983, pp. 383–404.
11.
Zurück zum Zitat K. Sadananda and P. Shahinian: Mater. Sci., Eng., 1980, vol. 43, pp. 159–68. K. Sadananda and P. Shahinian: Mater. Sci., Eng., 1980, vol. 43, pp. 159–68.
12.
13.
Zurück zum Zitat P.F. Browning: cited in Ref. [24] by D.A. Woodford: Energy Mater., 2006, vol. 1 (1), pp. 59–79. P.F. Browning: cited in Ref. [24] by D.A. Woodford: Energy Mater., 2006, vol. 1 (1), pp. 59–79.
14.
Zurück zum Zitat K. Sadananda and P. Shahinian: Creep-Fatigue Environment Interactions, R.M. Pelloux and N.S. Stoloff, eds., TMS-AIME, Warrendale, PA, 1979, pp. 86–111. K. Sadananda and P. Shahinian: Creep-Fatigue Environment Interactions, R.M. Pelloux and N.S. Stoloff, eds., TMS-AIME, Warrendale, PA, 1979, pp. 86–111.
15.
Zurück zum Zitat K. Sadananda and P. Shahinian, J. Eng. Mater. Technol., Vol. 100, 1978, pp. 381-87.CrossRef K. Sadananda and P. Shahinian, J. Eng. Mater. Technol., Vol. 100, 1978, pp. 381-87.CrossRef
16.
Zurück zum Zitat P. Valerio, M. Gao, and R.P. Wei, Scripta Metall. Mater., Vol. 30, 1994, pp. 1269-74.CrossRef P. Valerio, M. Gao, and R.P. Wei, Scripta Metall. Mater., Vol. 30, 1994, pp. 1269-74.CrossRef
17.
Zurück zum Zitat X. Liu, B. Kang, W. Carpenter and E. Barbero, J. Mater. Sci., Vol. 39, 2004, pp. 1967-73.CrossRef X. Liu, B. Kang, W. Carpenter and E. Barbero, J. Mater. Sci., Vol. 39, 2004, pp. 1967-73.CrossRef
18.
Zurück zum Zitat I. Gurrappa, S. Weinbruch, D. Naumenko, and W.J. Quadakkers, Mater. Corros., Vol. 51, 2000, pp. 224-35.CrossRef I. Gurrappa, S. Weinbruch, D. Naumenko, and W.J. Quadakkers, Mater. Corros., Vol. 51, 2000, pp. 224-35.CrossRef
19.
Zurück zum Zitat R.M. McMeeking and A.G. Evans, J. Am. Ceram. Soc., Vol. 65, 1982, pp. 242-46.CrossRef R.M. McMeeking and A.G. Evans, J. Am. Ceram. Soc., Vol. 65, 1982, pp. 242-46.CrossRef
20.
Zurück zum Zitat H. Ghonem, T. Nicholas, and A. Pineau, Fatigue Fract. Eng. Mater. Struct., Vol. 16, 1993, pp. 577–90.CrossRef H. Ghonem, T. Nicholas, and A. Pineau, Fatigue Fract. Eng. Mater. Struct., Vol. 16, 1993, pp. 577–90.CrossRef
21.
Zurück zum Zitat M. Olszta, D. Schreiber, L. Thomas, and S. Bruemmer: Adv. Mater. Process., 2012, vol. 170 (4), pp. 17–21. M. Olszta, D. Schreiber, L. Thomas, and S. Bruemmer: Adv. Mater. Process., 2012, vol. 170 (4), pp. 17–21.
22.
23.
Zurück zum Zitat K. Kusabiraki, H. Komatsu, and S. Ikeuchi, Metall. Mater. Trans. A, Vol. 29A, 1998, pp. 1169–74.CrossRef K. Kusabiraki, H. Komatsu, and S. Ikeuchi, Metall. Mater. Trans. A, Vol. 29A, 1998, pp. 1169–74.CrossRef
24.
Zurück zum Zitat J.C. Zhao, V. Ravikumar, and A.M. Beltran, Metall. Mater. Trans. A, Vol. 32A, 2001, pp. 1271–82.CrossRef J.C. Zhao, V. Ravikumar, and A.M. Beltran, Metall. Mater. Trans. A, Vol. 32A, 2001, pp. 1271–82.CrossRef
25.
Zurück zum Zitat T. Sourmail, Mater. Sci. Technol.,, Vol. 17, 2001, pp. 1-14. T. Sourmail, Mater. Sci. Technol.,, Vol. 17, 2001, pp. 1-14.
26.
Zurück zum Zitat T.M. Pollock and S. Tin, J. Propuls. Power, Vol. 22, 2006, pp. 361-74.CrossRef T.M. Pollock and S. Tin, J. Propuls. Power, Vol. 22, 2006, pp. 361-74.CrossRef
27.
Zurück zum Zitat J. Laigo, F. Tancret, R. Le Gall, and J. Furtado, Adv. Mater. Res., Vols. 15-17, 2007, pp. 702-07.CrossRef J. Laigo, F. Tancret, R. Le Gall, and J. Furtado, Adv. Mater. Res., Vols. 15-17, 2007, pp. 702-07.CrossRef
28.
Zurück zum Zitat W. Acchar and C. A. Cairo, Mater. Res., Vol. 9, 2006, pp. 171-74. W. Acchar and C. A. Cairo, Mater. Res., Vol. 9, 2006, pp. 171-74.
29.
Zurück zum Zitat K. Koji, N. Yokotani, and Y. Umakoshi, Mater. Sci. Forum, Vol. 512, 2006, pp. 67-72.CrossRef K. Koji, N. Yokotani, and Y. Umakoshi, Mater. Sci. Forum, Vol. 512, 2006, pp. 67-72.CrossRef
30.
Zurück zum Zitat K. Hirota, K. Mitani, M. Yoshinak, and O. Yamaguchi, Mater. Sci. Eng. A, Vol. 399, 2005, pp. 154-60.CrossRef K. Hirota, K. Mitani, M. Yoshinak, and O. Yamaguchi, Mater. Sci. Eng. A, Vol. 399, 2005, pp. 154-60.CrossRef
31.
Zurück zum Zitat G.A. Young, T.E. Capobianco, M.A. Penik, B.W. Morris, and J.J. McGee, Weld. J., Vol. 87, 2008, pp. 31s-43s. G.A. Young, T.E. Capobianco, M.A. Penik, B.W. Morris, and J.J. McGee, Weld. J., Vol. 87, 2008, pp. 31s-43s.
32.
Zurück zum Zitat J.D. Rigney and J.J. Lewandowski, Mater. Sci. Eng. A, Vol. 149, 1992, pp. 143-51.CrossRef J.D. Rigney and J.J. Lewandowski, Mater. Sci. Eng. A, Vol. 149, 1992, pp. 143-51.CrossRef
33.
Zurück zum Zitat S. Musikant: What Every Engineer Should Know About Ceramics, chap. 6, Marcel-Dekker, New York, NY, 1991, pp. 99–122. S. Musikant: What Every Engineer Should Know About Ceramics, chap. 6, Marcel-Dekker, New York, NY, 1991, pp. 99–122.
34.
Zurück zum Zitat T. Chudoba, N. Schwarzer, and F. Richter, Surf. Coat. Technol., Vol. 127, 2000, pp. 9–17.CrossRef T. Chudoba, N. Schwarzer, and F. Richter, Surf. Coat. Technol., Vol. 127, 2000, pp. 9–17.CrossRef
35.
36.
37.
Zurück zum Zitat P. Thompson, D.E. Cox, and J.B. Hastings, J. Appl. Crystallogr., Vol. 20, 1987, pp. 79-83.CrossRef P. Thompson, D.E. Cox, and J.B. Hastings, J. Appl. Crystallogr., Vol. 20, 1987, pp. 79-83.CrossRef
38.
Zurück zum Zitat H. Berger, H. Tang, and F. Levy, J. Cryst. Growth, Vol. 130, 1993, pp. 108-12.CrossRef H. Berger, H. Tang, and F. Levy, J. Cryst. Growth, Vol. 130, 1993, pp. 108-12.CrossRef
39.
40.
Zurück zum Zitat D.R. Lide: CRC Handbook of Chemistry and Physics, 79th ed., CRC, Boca Raton, FL, 1998/1999. D.R. Lide: CRC Handbook of Chemistry and Physics, 79th ed., CRC, Boca Raton, FL, 1998/1999.
41.
Zurück zum Zitat T. Bredow and A.R. Gerson, Phys. Rev. B, Vol. 61, 2000, pp. 5194-201.CrossRef T. Bredow and A.R. Gerson, Phys. Rev. B, Vol. 61, 2000, pp. 5194-201.CrossRef
42.
Zurück zum Zitat X.S. Du, S. Hak, T. Hibma, O.C. Rogojanu, and B. Struth, J. Cryst. Growth, Vol. 293, 2006, pp. 228-32.CrossRef X.S. Du, S. Hak, T. Hibma, O.C. Rogojanu, and B. Struth, J. Cryst. Growth, Vol. 293, 2006, pp. 228-32.CrossRef
43.
Zurück zum Zitat R. Guillament, J. Lopitaux, B. Hannoyer, and M. Lenglet: J. Phys. IV, 1993, vol. 3, pp. 349–56. R. Guillament, J. Lopitaux, B. Hannoyer, and M. Lenglet: J. Phys. IV, 1993, vol. 3, pp. 349–56.
44.
Zurück zum Zitat R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1976, p. 8. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1976, p. 8.
45.
Zurück zum Zitat W.J. Mills and L.D. Blackhurn, J. Eng. Mater. Technol., Vol. 110, 1988, pp. 286-97.CrossRef W.J. Mills and L.D. Blackhurn, J. Eng. Mater. Technol., Vol. 110, 1988, pp. 286-97.CrossRef
46.
Zurück zum Zitat Y.H. Qi and P. Bruckel, and P. Lours, J. Mater. Sci., Vol. 22, 2003, pp. 371-74. Y.H. Qi and P. Bruckel, and P. Lours, J. Mater. Sci., Vol. 22, 2003, pp. 371-74.
47.
Zurück zum Zitat L.A. James and W.J. Mills, Eng. Fract. Mech., Vol. 22, 1985, pp. 797-817.CrossRef L.A. James and W.J. Mills, Eng. Fract. Mech., Vol. 22, 1985, pp. 797-817.CrossRef
48.
Zurück zum Zitat J.L. Yuen, C.G. Schmidt, and P. Roy, Fatigue Fract. Eng. Mater. Struct., Vol. 8, 1985, pp. 65-76.CrossRef J.L. Yuen, C.G. Schmidt, and P. Roy, Fatigue Fract. Eng. Mater. Struct., Vol. 8, 1985, pp. 65-76.CrossRef
49.
Zurück zum Zitat S. Suresh and R.O. Ritchie, Scripta Metall., 1983, Vol. 17, pp. 575-80.CrossRef S. Suresh and R.O. Ritchie, Scripta Metall., 1983, Vol. 17, pp. 575-80.CrossRef
50.
51.
Zurück zum Zitat J.L. Yuen, P. Roy, and W.D. Nix, Metall. Trans. A., Vol. 15A, 1984, pp. 1769-75.CrossRef J.L. Yuen, P. Roy, and W.D. Nix, Metall. Trans. A., Vol. 15A, 1984, pp. 1769-75.CrossRef
52.
Zurück zum Zitat S.S. Kim. S.J. Choe, and K.S. Shin, Met. Mater., Vol. 4, No. 1, 1998, pp. 15-23.CrossRef S.S. Kim. S.J. Choe, and K.S. Shin, Met. Mater., Vol. 4, No. 1, 1998, pp. 15-23.CrossRef
53.
Zurück zum Zitat Wei, R.P., and Landes, J.D., Mater. Res. Stand., Vol. 44 (46), July 1969, pp. 25-27. Wei, R.P., and Landes, J.D., Mater. Res. Stand., Vol. 44 (46), July 1969, pp. 25-27.
54.
Zurück zum Zitat R.H. Van Stone and D.C. Slavik: Fatigue and Fracture Mechanics: 31st Volume, ASTM STP 1389, G.R. Halford and J.P. Gallagher, eds., ASTM, West Conshohocken, PA, 2000, pp. 405–26. R.H. Van Stone and D.C. Slavik: Fatigue and Fracture Mechanics: 31st Volume, ASTM STP 1389, G.R. Halford and J.P. Gallagher, eds., ASTM, West Conshohocken, PA, 2000, pp. 405–26.
55.
Zurück zum Zitat P.C. Paris and F. Erdogan: Trans. ASME J. Basic Eng. Ser. D, 1963, vol. 85 (3), pp. 528–533. P.C. Paris and F. Erdogan: Trans. ASME J. Basic Eng. Ser. D, 1963, vol. 85 (3), pp. 528–533.
56.
Zurück zum Zitat R.W. Hayes, Metall. and Mater. Transactions A, Vol. 39A, 2008, pp. 2596-2606.CrossRef R.W. Hayes, Metall. and Mater. Transactions A, Vol. 39A, 2008, pp. 2596-2606.CrossRef
57.
Zurück zum Zitat M.J. Starink and P.A.S. Reed, Mater. Sci. Eng. A, Vol. 491, 2008, pp. 279–89.CrossRef M.J. Starink and P.A.S. Reed, Mater. Sci. Eng. A, Vol. 491, 2008, pp. 279–89.CrossRef
58.
Zurück zum Zitat T. Weerasooriya: AFWAL-TR-4038, University of Dayton, Dayton, OH, June 1987. T. Weerasooriya: AFWAL-TR-4038, University of Dayton, Dayton, OH, June 1987.
59.
Zurück zum Zitat K.-M. Chang, M.F. Henry, and M.G. Benz: JOM, 1990, vol. 42 (12), pp. 29–35. K.-M. Chang, M.F. Henry, and M.G. Benz: JOM, 1990, vol. 42 (12), pp. 29–35.
60.
Zurück zum Zitat S.S. Kim, S.J. Choe, and K.S. Shin: Met. Mater., Vol. 4, 1998, pp. 1-13.CrossRef S.S. Kim, S.J. Choe, and K.S. Shin: Met. Mater., Vol. 4, 1998, pp. 1-13.CrossRef
61.
Zurück zum Zitat K.O. Findley, J.L. Evans, and A. Saxena: Int. Mater. Rev., Vol. 56, 2011, pp. 49-71.CrossRef K.O. Findley, J.L. Evans, and A. Saxena: Int. Mater. Rev., Vol. 56, 2011, pp. 49-71.CrossRef
62.
Zurück zum Zitat C.M. Branco, A.S. Brito, and J. Byrne: Proceedings of TRO AVT Workshop on “Qualification of Life Extension Schemes for Engine Components”, Corfu, Greece, October 1998. C.M. Branco, A.S. Brito, and J. Byrne: Proceedings of TRO AVT Workshop on “Qualification of Life Extension Schemes for Engine Components”, Corfu, Greece, October 1998.
63.
Zurück zum Zitat W. Hoffelner: Mater. Sci. Technol., 1987, vol. 3, pp. 765–70. W. Hoffelner: Mater. Sci. Technol., 1987, vol. 3, pp. 765–70.
64.
Zurück zum Zitat J.A. Ruiz-Sabariego and S. Pommier: Int. J. Fatigue, Vol. 31, 2009, pp. 1724-32.CrossRef J.A. Ruiz-Sabariego and S. Pommier: Int. J. Fatigue, Vol. 31, 2009, pp. 1724-32.CrossRef
65.
Zurück zum Zitat J. Telesman, P. Kantzos, J. Gayda, P.J. Bonacuse, and A. Prescenzi: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 215–24. J. Telesman, P. Kantzos, J. Gayda, P.J. Bonacuse, and A. Prescenzi: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 215–24.
66.
Zurück zum Zitat D. Rice, P. Kantzos, B. Hann, J. Neumann, and R. Helmink: Superalloys 2008, R.C. Reed, K.A. Green, P. Caron T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 139–47. D. Rice, P. Kantzos, B. Hann, J. Neumann, and R. Helmink: Superalloys 2008, R.C. Reed, K.A. Green, P. Caron T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 139–47.
67.
Zurück zum Zitat J. Tsang, R.M. Kearsey, P. Au, S. Oppenheimer, and E. McDevitt: Can. Metall. Q., Vol. 50, No. 3, 2011, pp. 222-31.CrossRef J. Tsang, R.M. Kearsey, P. Au, S. Oppenheimer, and E. McDevitt: Can. Metall. Q., Vol. 50, No. 3, 2011, pp. 222-31.CrossRef
69.
Zurück zum Zitat D. Broek: Elementary Engineering Fracture Mechanics, Sijthoff & Noordhoff, Alphen aan den Rijn, the Netherlands, 1978, pp. 218–19. D. Broek: Elementary Engineering Fracture Mechanics, Sijthoff & Noordhoff, Alphen aan den Rijn, the Netherlands, 1978, pp. 218–19.
70.
Zurück zum Zitat M.P. Enright and K.S. Chan: J. ASTM Int., Vol. 1, No. 8, 2004, pp. 87-103. M.P. Enright and K.S. Chan: J. ASTM Int., Vol. 1, No. 8, 2004, pp. 87-103.
Metadaten
Titel
A Microstructure-Based Time-Dependent Crack Growth Model for Life and Reliability Prediction of Turbopropulsion Systems
verfasst von
Kwai S. Chan
Michael P. Enright
Jonathan Moody
Simeon H. K. Fitch
Publikationsdatum
01.01.2014
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2014
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-013-1971-9

Weitere Artikel der Ausgabe 1/2014

Metallurgical and Materials Transactions A 1/2014 Zur Ausgabe

Symposium: Neutron and X-Ray Studies of Advanced Materials VI: Diffraction Centennial and Beyond

Influence of Lattice Defects on the Grain Growth Kinetics of Nanocrystalline Fluorite

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.