Skip to main content
Erschienen in: Journal of Computational Electronics 1/2017

05.11.2016

A modified nanoelectronic spiking neuron model

verfasst von: Beatriz dos Santos Pês, Janaina Gonçalves Guimarães, Marlio José do Couto Bonfim

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spiking neural networks (SNNs) first came to the attention of scientists due to the search for a structure capable of emulating more closely the behavior of the human brain. The biological nervous system has some characteristics that allow it to process a large amount of data very quickly. It is also a fault-tolerant system, with a high level of parallelism. Low power consumption is another feature of the human brain that is desirable for electronic circuits. In this context, several models of artificial spiking neurons were developed, aiming to construct networks able to combine the best characteristics of the human brain. Most of these models, however, lack validation in larger networks. This paper proposes the implementation of an SNN based on a nanoelectronic spiking neuron model developed in previous works. To validate the behavior of an isolated neuron in a network, logic gates (NOT, OR, AND, and XOR) are used as a benchmark. The goal of this paper is to present a feasibility study on the possibility of implementing such nanoelectronic spiking neuron networks based on this spiking neuron model. Nanoelectronics represents an appealing implementation due to the gains regarding occupied area and power consumption, which are inherent characteristics of this technology. The neuron model was modified for simulation at room temperature. An information code based on the amplitude of the pulses presented at the output of the neuron was developed. During deployment of this approach, some limitations regarding the neuron model were detected; some possible solutions are proposed as future work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Maas, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 1659–1671 (1997)CrossRef Maas, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 1659–1671 (1997)CrossRef
2.
Zurück zum Zitat Jain, A., Maoand, J., Mohiuddin, K.: Artificial neural networks: a tutorial. Computer 29, 31–44 (1996)CrossRef Jain, A., Maoand, J., Mohiuddin, K.: Artificial neural networks: a tutorial. Computer 29, 31–44 (1996)CrossRef
3.
Zurück zum Zitat Oroski, E., Bauschspiess, A., Pês, B. S.: Identification of failure in transmission lines spacers using stereo vision and artificial neural networks. In: Proceedings of XIX Brazilian Conference on Automation, CBA, pp. 301–308 (2012) Oroski, E., Bauschspiess, A., Pês, B. S.: Identification of failure in transmission lines spacers using stereo vision and artificial neural networks. In: Proceedings of XIX Brazilian Conference on Automation, CBA, pp. 301–308 (2012)
4.
Zurück zum Zitat Jiang, J., Trundle, P., Ren, J.: Medical image analysis with artificial neural networks. Comput. Med. Imaging Gr. 34, 617–631 (2010)CrossRef Jiang, J., Trundle, P., Ren, J.: Medical image analysis with artificial neural networks. Comput. Med. Imaging Gr. 34, 617–631 (2010)CrossRef
5.
Zurück zum Zitat Yellamraju, S., Kumari, S., Girolkar, S., Chourasia, S., Tete, A.D.: Design of various logic gates in neural networks. In: Annual IEEE India Conference (INDICON), pp. 1–5 (2013) Yellamraju, S., Kumari, S., Girolkar, S., Chourasia, S., Tete, A.D.: Design of various logic gates in neural networks. In: Annual IEEE India Conference (INDICON), pp. 1–5 (2013)
6.
Zurück zum Zitat Guimarães, J.G., Romariz, A.R.S.: Bio-inspired oscillators with single-electron transistors: circuit-simulation and input encoding example. J. Comput. Theor. Nanosci. 10, 2563–2567 (2013)CrossRef Guimarães, J.G., Romariz, A.R.S.: Bio-inspired oscillators with single-electron transistors: circuit-simulation and input encoding example. J. Comput. Theor. Nanosci. 10, 2563–2567 (2013)CrossRef
7.
Zurück zum Zitat Kampakis, S.: Improved Izhikevich neurons for spiking neural networks. Soft Comput. 16, 943–953 (2011)CrossRef Kampakis, S.: Improved Izhikevich neurons for spiking neural networks. Soft Comput. 16, 943–953 (2011)CrossRef
8.
Zurück zum Zitat Tete, A.D., Deshmukh, A.Y., Bajaj, P., Keskar, A.G.: Design of dynamic synapse circuits with VLSI approach. In: Third International Conference on Emerging Trends in Engineering and Technology, pp. 707–711 (2010) Tete, A.D., Deshmukh, A.Y., Bajaj, P., Keskar, A.G.: Design of dynamic synapse circuits with VLSI approach. In: Third International Conference on Emerging Trends in Engineering and Technology, pp. 707–711 (2010)
9.
Zurück zum Zitat Nazari, S., Faez, K., Amiri, M., Karami, E.: A novel digital implementation of neuron-astrocyte interactions. J. Comput. Electron. 14, 227–239 (2015)CrossRef Nazari, S., Faez, K., Amiri, M., Karami, E.: A novel digital implementation of neuron-astrocyte interactions. J. Comput. Electron. 14, 227–239 (2015)CrossRef
10.
Zurück zum Zitat Carrillo, S., Harkin, J., McDaid, L., Pande, S., Cawley, S., McGinley, B., Morgan, F.: Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers. Neural Netw. 33, 42–57 (2012) Carrillo, S., Harkin, J., McDaid, L., Pande, S., Cawley, S., McGinley, B., Morgan, F.: Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers. Neural Netw. 33, 42–57 (2012)
11.
Zurück zum Zitat Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002) Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)
12.
Zurück zum Zitat Oya, T., Asai, T., Kagaya, R., Hirose, T., Amemyia, Y.: Neuronal synchony detection on single-electron neural networks. Chaos, Solitons Fractals 27, 887–894 (2006)CrossRefMATH Oya, T., Asai, T., Kagaya, R., Hirose, T., Amemyia, Y.: Neuronal synchony detection on single-electron neural networks. Chaos, Solitons Fractals 27, 887–894 (2006)CrossRefMATH
13.
Zurück zum Zitat Wen-peng, L., Xu, C., Hua-xiang, L.: A new hardware-oriented spiking neuron model based on SET and its properties. Phys. Proced. 22, 170–176. In: International Conference on Physics Science and Technology (ICPST) (2011) Wen-peng, L., Xu, C., Hua-xiang, L.: A new hardware-oriented spiking neuron model based on SET and its properties. Phys. Proced. 22, 170–176. In: International Conference on Physics Science and Technology (ICPST) (2011)
14.
Zurück zum Zitat Pal, S., Sinha, S.R.P., Verma, R.: Performance evaluation of single electron transistor with CMOS technology. IJETAE 3, 615–621 (2013) Pal, S., Sinha, S.R.P., Verma, R.: Performance evaluation of single electron transistor with CMOS technology. IJETAE 3, 615–621 (2013)
15.
Zurück zum Zitat Parekha, R., Beauvaisb, J., Drouinb, D.: SET logic driving capability and its enhancement in 3-D integrated SET-CMOS circuit. Microelectron. J. 45, 1087–1092 (2014)CrossRef Parekha, R., Beauvaisb, J., Drouinb, D.: SET logic driving capability and its enhancement in 3-D integrated SET-CMOS circuit. Microelectron. J. 45, 1087–1092 (2014)CrossRef
16.
17.
Zurück zum Zitat Gerousis, C., Ball, D.: Single-electron tunneling circuits for image processing applications. In: Proceedings of the 2008 International Conference on Computer Design (CDES’08), pp. 139–144 (2008) Gerousis, C., Ball, D.: Single-electron tunneling circuits for image processing applications. In: Proceedings of the 2008 International Conference on Computer Design (CDES’08), pp. 139–144 (2008)
18.
Zurück zum Zitat Fahmy, H., Ismail, K.: Analysis of a single-electron decimal adder. Appl. Phys. Lett. 70, 2613–2615 (1997)CrossRef Fahmy, H., Ismail, K.: Analysis of a single-electron decimal adder. Appl. Phys. Lett. 70, 2613–2615 (1997)CrossRef
19.
Zurück zum Zitat Degawa, K., Aoki, T., Higuchi, T., Inokawa, H., Takahashi, Y.: A single-electron-transistor logic gate family for binary, multiple-valued and mixed-mode logic. IEICE Trans. Electron. E87-C, 1827–1836 (2004) Degawa, K., Aoki, T., Higuchi, T., Inokawa, H., Takahashi, Y.: A single-electron-transistor logic gate family for binary, multiple-valued and mixed-mode logic. IEICE Trans. Electron. E87-C, 1827–1836 (2004)
20.
Zurück zum Zitat Nogueira, C.P.S.M., Guimarães, J.G.: Pattern recognition based on auto associative single-electron neural network. J. Comput. Theor. Nanosci. 9, 974–979 (2012)CrossRef Nogueira, C.P.S.M., Guimarães, J.G.: Pattern recognition based on auto associative single-electron neural network. J. Comput. Theor. Nanosci. 9, 974–979 (2012)CrossRef
21.
Zurück zum Zitat Grabert, H., Devoret, M.H.: Single Charge Tunneling—Coulomb Blockade Phenomena in Nanostructures, vol. 294. NATO ASI Series, Series B: Physics, E.U.A. Plenum Press, New York (1991) Grabert, H., Devoret, M.H.: Single Charge Tunneling—Coulomb Blockade Phenomena in Nanostructures, vol. 294. NATO ASI Series, Series B: Physics, E.U.A. Plenum Press, New York (1991)
22.
Zurück zum Zitat Lientschnig, G., Weymann, I., Hadley, P.: Simulating hybrid circuits of single electron transistors and field-effect transistors. J. Appl. Phys. 42, 6467–6472 (2003)CrossRef Lientschnig, G., Weymann, I., Hadley, P.: Simulating hybrid circuits of single electron transistors and field-effect transistors. J. Appl. Phys. 42, 6467–6472 (2003)CrossRef
23.
Zurück zum Zitat Allen, P.E., Holberg, D.R.: CMOS Analog Circuit Design. Oxford University Press, Oxford (2002) Allen, P.E., Holberg, D.R.: CMOS Analog Circuit Design. Oxford University Press, Oxford (2002)
24.
Zurück zum Zitat Liu, B.: A CMOS neuron for VLSI circuit implementation of pulsed neural networks. In: IECON 02 [IEEE 2002 28th Annual Conference of the Industrial Electronics Socisty], vol. 4, pp. 3182–3185 (2002) Liu, B.: A CMOS neuron for VLSI circuit implementation of pulsed neural networks. In: IECON 02 [IEEE 2002 28th Annual Conference of the Industrial Electronics Socisty], vol. 4, pp. 3182–3185 (2002)
Metadaten
Titel
A modified nanoelectronic spiking neuron model
verfasst von
Beatriz dos Santos Pês
Janaina Gonçalves Guimarães
Marlio José do Couto Bonfim
Publikationsdatum
05.11.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0928-9

Weitere Artikel der Ausgabe 1/2017

Journal of Computational Electronics 1/2017 Zur Ausgabe

Neuer Inhalt